MyModel2
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1089
Model description
This is a fine-tuned model available in both SafeTensors and GGUF formats. The GGUF version allows efficient inference with tools like llama.cpp
and ctransformers
.
Intended uses & limitations
This model can be used for various natural language processing tasks. However, it may have limitations based on the dataset and fine-tuning constraints.
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9498 | 0.2693 | 500 | 0.6119 |
0.6245 | 0.5385 | 1000 | 0.5831 |
0.5931 | 0.8078 | 1500 | 0.5462 |
0.561 | 1.0770 | 2000 | 0.5148 |
0.5312 | 1.3463 | 2500 | 0.4750 |
0.523 | 1.6155 | 3000 | 0.4421 |
0.5121 | 1.8848 | 3500 | 0.4096 |
0.4059 | 2.1540 | 4000 | 0.3263 |
0.3559 | 2.4233 | 4500 | 0.2780 |
0.3409 | 2.6925 | 5000 | 0.2367 |
0.3352 | 2.9618 | 5500 | 0.1973 |
0.1918 | 3.2310 | 6000 | 0.1652 |
0.1826 | 3.5003 | 6500 | 0.1507 |
0.1762 | 3.7695 | 7000 | 0.1360 |
0.168 | 4.0388 | 7500 | 0.1232 |
0.1186 | 4.3080 | 8000 | 0.1193 |
0.1227 | 4.5773 | 8500 | 0.1134 |
0.1273 | 4.8465 | 9000 | 0.1089 |
Inference
This model supports inference via GGUF using llama.cpp
or ctransformers
.
Using llama.cpp
(CLI)
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
make -j
./main -m first.gguf -p "Hello, how are you?"
Using ctransformers
(Python)
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"your_username/your_model_repo",
model_file="first.gguf",
model_type="llama"
)
output = model("Hello, how are you?")
print(output)
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Wade5/MyModel2
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B