|
import os |
|
import glob |
|
import tqdm |
|
import math |
|
import imageio |
|
import random |
|
import warnings |
|
import tensorboardX |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import time |
|
from datetime import datetime |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import trimesh |
|
from rich.console import Console |
|
from torch_ema import ExponentialMovingAverage |
|
|
|
from packaging import version as pver |
|
|
|
def custom_meshgrid(*args): |
|
|
|
if pver.parse(torch.__version__) < pver.parse('1.10'): |
|
return torch.meshgrid(*args) |
|
else: |
|
return torch.meshgrid(*args, indexing='ij') |
|
|
|
def safe_normalize(x, eps=1e-20): |
|
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps)) |
|
|
|
@torch.cuda.amp.autocast(enabled=False) |
|
def get_rays(poses, intrinsics, H, W, N=-1, error_map=None): |
|
''' get rays |
|
Args: |
|
poses: [B, 4, 4], cam2world |
|
intrinsics: [4] |
|
H, W, N: int |
|
error_map: [B, 128 * 128], sample probability based on training error |
|
Returns: |
|
rays_o, rays_d: [B, N, 3] |
|
inds: [B, N] |
|
''' |
|
|
|
device = poses.device |
|
B = poses.shape[0] |
|
fx, fy, cx, cy = intrinsics |
|
|
|
i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) |
|
i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 |
|
j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 |
|
|
|
results = {} |
|
|
|
if N > 0: |
|
N = min(N, H*W) |
|
|
|
if error_map is None: |
|
inds = torch.randint(0, H*W, size=[N], device=device) |
|
inds = inds.expand([B, N]) |
|
else: |
|
|
|
|
|
inds_coarse = torch.multinomial(error_map.to(device), N, replacement=False) |
|
|
|
|
|
inds_x, inds_y = inds_coarse // 128, inds_coarse % 128 |
|
sx, sy = H / 128, W / 128 |
|
inds_x = (inds_x * sx + torch.rand(B, N, device=device) * sx).long().clamp(max=H - 1) |
|
inds_y = (inds_y * sy + torch.rand(B, N, device=device) * sy).long().clamp(max=W - 1) |
|
inds = inds_x * W + inds_y |
|
|
|
results['inds_coarse'] = inds_coarse |
|
|
|
i = torch.gather(i, -1, inds) |
|
j = torch.gather(j, -1, inds) |
|
|
|
results['inds'] = inds |
|
|
|
else: |
|
inds = torch.arange(H*W, device=device).expand([B, H*W]) |
|
|
|
zs = torch.ones_like(i) |
|
xs = (i - cx) / fx * zs |
|
ys = (j - cy) / fy * zs |
|
directions = torch.stack((xs, ys, zs), dim=-1) |
|
directions = safe_normalize(directions) |
|
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) |
|
|
|
rays_o = poses[..., :3, 3] |
|
rays_o = rays_o[..., None, :].expand_as(rays_d) |
|
|
|
results['rays_o'] = rays_o |
|
results['rays_d'] = rays_d |
|
|
|
return results |
|
|
|
|
|
def seed_everything(seed): |
|
random.seed(seed) |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
|
|
|
|
|
|
|
|
def torch_vis_2d(x, renormalize=False): |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
|
|
if isinstance(x, torch.Tensor): |
|
if len(x.shape) == 3: |
|
x = x.permute(1,2,0).squeeze() |
|
x = x.detach().cpu().numpy() |
|
|
|
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}') |
|
|
|
x = x.astype(np.float32) |
|
|
|
|
|
if renormalize: |
|
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8) |
|
|
|
plt.imshow(x) |
|
plt.show() |
|
|
|
@torch.jit.script |
|
def linear_to_srgb(x): |
|
return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055) |
|
|
|
|
|
@torch.jit.script |
|
def srgb_to_linear(x): |
|
return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) |
|
|
|
|
|
class Trainer(object): |
|
def __init__(self, |
|
name, |
|
opt, |
|
model, |
|
guidance, |
|
criterion=None, |
|
optimizer=None, |
|
ema_decay=None, |
|
lr_scheduler=None, |
|
metrics=[], |
|
local_rank=0, |
|
world_size=1, |
|
device=None, |
|
mute=False, |
|
fp16=False, |
|
eval_interval=1, |
|
max_keep_ckpt=2, |
|
workspace='workspace', |
|
best_mode='min', |
|
use_loss_as_metric=True, |
|
report_metric_at_train=False, |
|
use_checkpoint="latest", |
|
use_tensorboardX=True, |
|
scheduler_update_every_step=False, |
|
): |
|
|
|
self.name = name |
|
self.opt = opt |
|
self.mute = mute |
|
self.metrics = metrics |
|
self.local_rank = local_rank |
|
self.world_size = world_size |
|
self.workspace = workspace |
|
self.ema_decay = ema_decay |
|
self.fp16 = fp16 |
|
self.best_mode = best_mode |
|
self.use_loss_as_metric = use_loss_as_metric |
|
self.report_metric_at_train = report_metric_at_train |
|
self.max_keep_ckpt = max_keep_ckpt |
|
self.eval_interval = eval_interval |
|
self.use_checkpoint = use_checkpoint |
|
self.use_tensorboardX = use_tensorboardX |
|
self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S") |
|
self.scheduler_update_every_step = scheduler_update_every_step |
|
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu') |
|
self.console = Console() |
|
|
|
model.to(self.device) |
|
if self.world_size > 1: |
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank]) |
|
self.model = model |
|
|
|
|
|
self.guidance = guidance |
|
|
|
|
|
if self.guidance is not None: |
|
|
|
for p in self.guidance.parameters(): |
|
p.requires_grad = False |
|
|
|
self.prepare_text_embeddings() |
|
|
|
else: |
|
self.text_z = None |
|
|
|
if isinstance(criterion, nn.Module): |
|
criterion.to(self.device) |
|
self.criterion = criterion |
|
|
|
if optimizer is None: |
|
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) |
|
else: |
|
self.optimizer = optimizer(self.model) |
|
|
|
if lr_scheduler is None: |
|
self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) |
|
else: |
|
self.lr_scheduler = lr_scheduler(self.optimizer) |
|
|
|
if ema_decay is not None: |
|
self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay) |
|
else: |
|
self.ema = None |
|
|
|
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16) |
|
|
|
|
|
self.epoch = 0 |
|
self.global_step = 0 |
|
self.local_step = 0 |
|
self.stats = { |
|
"loss": [], |
|
"valid_loss": [], |
|
"results": [], |
|
"checkpoints": [], |
|
"best_result": None, |
|
} |
|
|
|
|
|
if len(metrics) == 0 or self.use_loss_as_metric: |
|
self.best_mode = 'min' |
|
|
|
|
|
self.log_ptr = None |
|
if self.workspace is not None: |
|
os.makedirs(self.workspace, exist_ok=True) |
|
self.log_path = os.path.join(workspace, f"log_{self.name}.txt") |
|
self.log_ptr = open(self.log_path, "a+") |
|
|
|
self.ckpt_path = os.path.join(self.workspace, 'checkpoints') |
|
self.best_path = f"{self.ckpt_path}/{self.name}.pth" |
|
os.makedirs(self.ckpt_path, exist_ok=True) |
|
|
|
self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}') |
|
self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}') |
|
|
|
if self.workspace is not None: |
|
if self.use_checkpoint == "scratch": |
|
self.log("[INFO] Training from scratch ...") |
|
elif self.use_checkpoint == "latest": |
|
self.log("[INFO] Loading latest checkpoint ...") |
|
self.load_checkpoint() |
|
elif self.use_checkpoint == "latest_model": |
|
self.log("[INFO] Loading latest checkpoint (model only)...") |
|
self.load_checkpoint(model_only=True) |
|
elif self.use_checkpoint == "best": |
|
if os.path.exists(self.best_path): |
|
self.log("[INFO] Loading best checkpoint ...") |
|
self.load_checkpoint(self.best_path) |
|
else: |
|
self.log(f"[INFO] {self.best_path} not found, loading latest ...") |
|
self.load_checkpoint() |
|
else: |
|
self.log(f"[INFO] Loading {self.use_checkpoint} ...") |
|
self.load_checkpoint(self.use_checkpoint) |
|
|
|
|
|
def prepare_text_embeddings(self): |
|
|
|
if self.opt.text is None: |
|
self.log(f"[WARN] text prompt is not provided.") |
|
self.text_z = None |
|
return |
|
|
|
if not self.opt.dir_text: |
|
self.text_z = self.guidance.get_text_embeds([self.opt.text]) |
|
else: |
|
self.text_z = [] |
|
for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']: |
|
text = f"{self.opt.text}, {d} view" |
|
text_z = self.guidance.get_text_embeds([text]) |
|
self.text_z.append(text_z) |
|
|
|
def __del__(self): |
|
if self.log_ptr: |
|
self.log_ptr.close() |
|
|
|
|
|
def log(self, *args, **kwargs): |
|
if self.local_rank == 0: |
|
if not self.mute: |
|
|
|
self.console.print(*args, **kwargs) |
|
if self.log_ptr: |
|
print(*args, file=self.log_ptr) |
|
self.log_ptr.flush() |
|
|
|
|
|
|
|
def train_step(self, data): |
|
|
|
rays_o = data['rays_o'] |
|
rays_d = data['rays_d'] |
|
|
|
B, N = rays_o.shape[:2] |
|
H, W = data['H'], data['W'] |
|
|
|
|
|
if self.global_step < self.opt.albedo_iters: |
|
shading = 'albedo' |
|
ambient_ratio = 1.0 |
|
else: |
|
rand = random.random() |
|
if rand > 0.8: |
|
shading = 'albedo' |
|
ambient_ratio = 1.0 |
|
|
|
|
|
|
|
else: |
|
shading = 'lambertian' |
|
ambient_ratio = 0.1 |
|
|
|
|
|
bg_color = torch.rand((B * N, 3), device=rays_o.device) |
|
outputs = self.model.render(rays_o, rays_d, staged=False, perturb=True, bg_color=bg_color, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt)) |
|
pred_rgb = outputs['image'].reshape(B, H, W, 3).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.opt.dir_text: |
|
dirs = data['dir'] |
|
text_z = self.text_z[dirs] |
|
else: |
|
text_z = self.text_z |
|
|
|
|
|
|
|
loss = self.guidance.train_step(text_z, pred_rgb) |
|
|
|
|
|
|
|
pred_ws = outputs['weights_sum'].reshape(B, 1, H, W) |
|
|
|
if self.opt.lambda_opacity > 0: |
|
loss_opacity = (pred_ws ** 2).mean() |
|
loss = loss + self.opt.lambda_opacity * loss_opacity |
|
|
|
if self.opt.lambda_entropy > 0: |
|
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5) |
|
|
|
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean() |
|
|
|
loss = loss + self.opt.lambda_entropy * loss_entropy |
|
|
|
if self.opt.lambda_orient > 0 and 'loss_orient' in outputs: |
|
loss_orient = outputs['loss_orient'] |
|
loss = loss + self.opt.lambda_orient * loss_orient |
|
|
|
return pred_rgb, pred_ws, loss |
|
|
|
def eval_step(self, data): |
|
|
|
rays_o = data['rays_o'] |
|
rays_d = data['rays_d'] |
|
|
|
B, N = rays_o.shape[:2] |
|
H, W = data['H'], data['W'] |
|
|
|
shading = data['shading'] if 'shading' in data else 'albedo' |
|
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0 |
|
light_d = data['light_d'] if 'light_d' in data else None |
|
|
|
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=False, bg_color=None, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt)) |
|
pred_rgb = outputs['image'].reshape(B, H, W, 3) |
|
pred_depth = outputs['depth'].reshape(B, H, W) |
|
pred_ws = outputs['weights_sum'].reshape(B, H, W) |
|
|
|
|
|
|
|
|
|
|
|
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5) |
|
|
|
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean() |
|
|
|
loss = self.opt.lambda_entropy * loss_entropy |
|
|
|
return pred_rgb, pred_depth, loss |
|
|
|
def test_step(self, data, bg_color=None, perturb=False): |
|
rays_o = data['rays_o'] |
|
rays_d = data['rays_d'] |
|
|
|
B, N = rays_o.shape[:2] |
|
H, W = data['H'], data['W'] |
|
|
|
if bg_color is not None: |
|
bg_color = bg_color.to(rays_o.device) |
|
else: |
|
bg_color = torch.ones(3, device=rays_o.device) |
|
|
|
shading = data['shading'] if 'shading' in data else 'albedo' |
|
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0 |
|
light_d = data['light_d'] if 'light_d' in data else None |
|
|
|
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=perturb, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, bg_color=bg_color, **vars(self.opt)) |
|
|
|
pred_rgb = outputs['image'].reshape(B, H, W, 3) |
|
pred_depth = outputs['depth'].reshape(B, H, W) |
|
|
|
return pred_rgb, pred_depth |
|
|
|
|
|
def save_mesh(self, save_path=None, resolution=128): |
|
|
|
if save_path is None: |
|
save_path = os.path.join(self.workspace, 'mesh') |
|
|
|
self.log(f"==> Saving mesh to {save_path}") |
|
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
self.model.export_mesh(save_path, resolution=resolution) |
|
|
|
self.log(f"==> Finished saving mesh.") |
|
|
|
|
|
|
|
def train(self, train_loader, valid_loader, max_epochs): |
|
|
|
assert self.text_z is not None, 'Training must provide a text prompt!' |
|
|
|
if self.use_tensorboardX and self.local_rank == 0: |
|
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name)) |
|
|
|
start_t = time.time() |
|
|
|
for epoch in range(self.epoch + 1, max_epochs + 1): |
|
self.epoch = epoch |
|
|
|
self.train_one_epoch(train_loader) |
|
|
|
if self.workspace is not None and self.local_rank == 0: |
|
self.save_checkpoint(full=True, best=False) |
|
|
|
if self.epoch % self.eval_interval == 0: |
|
self.evaluate_one_epoch(valid_loader) |
|
self.save_checkpoint(full=False, best=True) |
|
|
|
end_t = time.time() |
|
|
|
self.log(f"[INFO] training takes {(end_t - start_t)/ 60:.4f} minutes.") |
|
|
|
if self.use_tensorboardX and self.local_rank == 0: |
|
self.writer.close() |
|
|
|
def evaluate(self, loader, name=None): |
|
self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX |
|
self.evaluate_one_epoch(loader, name) |
|
self.use_tensorboardX = use_tensorboardX |
|
|
|
def test(self, loader, save_path=None, name=None, write_video=True): |
|
|
|
if save_path is None: |
|
save_path = os.path.join(self.workspace, 'results') |
|
|
|
if name is None: |
|
name = f'{self.name}_ep{self.epoch:04d}' |
|
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
self.log(f"==> Start Test, save results to {save_path}") |
|
|
|
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') |
|
self.model.eval() |
|
|
|
if write_video: |
|
all_preds = [] |
|
all_preds_depth = [] |
|
|
|
with torch.no_grad(): |
|
|
|
for i, data in enumerate(loader): |
|
|
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
preds, preds_depth = self.test_step(data) |
|
|
|
pred = preds[0].detach().cpu().numpy() |
|
pred = (pred * 255).astype(np.uint8) |
|
|
|
pred_depth = preds_depth[0].detach().cpu().numpy() |
|
pred_depth = (pred_depth * 255).astype(np.uint8) |
|
|
|
if write_video: |
|
all_preds.append(pred) |
|
all_preds_depth.append(pred_depth) |
|
else: |
|
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_rgb.png'), cv2.cvtColor(pred, cv2.COLOR_RGB2BGR)) |
|
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_depth.png'), pred_depth) |
|
|
|
pbar.update(loader.batch_size) |
|
|
|
if write_video: |
|
all_preds = np.stack(all_preds, axis=0) |
|
all_preds_depth = np.stack(all_preds_depth, axis=0) |
|
|
|
imageio.mimwrite(os.path.join(save_path, f'{name}_rgb.mp4'), all_preds, fps=25, quality=8, macro_block_size=1) |
|
imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1) |
|
|
|
self.log(f"==> Finished Test.") |
|
|
|
|
|
def train_gui(self, train_loader, step=16): |
|
|
|
self.model.train() |
|
|
|
total_loss = torch.tensor([0], dtype=torch.float32, device=self.device) |
|
|
|
loader = iter(train_loader) |
|
|
|
for _ in range(step): |
|
|
|
|
|
try: |
|
data = next(loader) |
|
except StopIteration: |
|
loader = iter(train_loader) |
|
data = next(loader) |
|
|
|
|
|
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: |
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
self.model.update_extra_state() |
|
|
|
self.global_step += 1 |
|
|
|
self.optimizer.zero_grad() |
|
|
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
pred_rgbs, pred_ws, loss = self.train_step(data) |
|
|
|
self.scaler.scale(loss).backward() |
|
self.scaler.step(self.optimizer) |
|
self.scaler.update() |
|
|
|
if self.scheduler_update_every_step: |
|
self.lr_scheduler.step() |
|
|
|
total_loss += loss.detach() |
|
|
|
if self.ema is not None: |
|
self.ema.update() |
|
|
|
average_loss = total_loss.item() / step |
|
|
|
if not self.scheduler_update_every_step: |
|
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): |
|
self.lr_scheduler.step(average_loss) |
|
else: |
|
self.lr_scheduler.step() |
|
|
|
outputs = { |
|
'loss': average_loss, |
|
'lr': self.optimizer.param_groups[0]['lr'], |
|
} |
|
|
|
return outputs |
|
|
|
|
|
|
|
def test_gui(self, pose, intrinsics, W, H, bg_color=None, spp=1, downscale=1, light_d=None, ambient_ratio=1.0, shading='albedo'): |
|
|
|
|
|
rH = int(H * downscale) |
|
rW = int(W * downscale) |
|
intrinsics = intrinsics * downscale |
|
|
|
pose = torch.from_numpy(pose).unsqueeze(0).to(self.device) |
|
|
|
rays = get_rays(pose, intrinsics, rH, rW, -1) |
|
|
|
|
|
light_d = np.deg2rad(light_d) |
|
light_d = np.array([ |
|
np.sin(light_d[0]) * np.sin(light_d[1]), |
|
np.cos(light_d[0]), |
|
np.sin(light_d[0]) * np.cos(light_d[1]), |
|
], dtype=np.float32) |
|
light_d = torch.from_numpy(light_d).to(self.device) |
|
|
|
data = { |
|
'rays_o': rays['rays_o'], |
|
'rays_d': rays['rays_d'], |
|
'H': rH, |
|
'W': rW, |
|
'light_d': light_d, |
|
'ambient_ratio': ambient_ratio, |
|
'shading': shading, |
|
} |
|
|
|
self.model.eval() |
|
|
|
if self.ema is not None: |
|
self.ema.store() |
|
self.ema.copy_to() |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
|
|
preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=spp) |
|
|
|
if self.ema is not None: |
|
self.ema.restore() |
|
|
|
|
|
if downscale != 1: |
|
|
|
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='nearest').permute(0, 2, 3, 1).contiguous() |
|
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1) |
|
|
|
outputs = { |
|
'image': preds[0].detach().cpu().numpy(), |
|
'depth': preds_depth[0].detach().cpu().numpy(), |
|
} |
|
|
|
return outputs |
|
|
|
def train_one_epoch(self, loader): |
|
self.log(f"==> Start Training {self.workspace} Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...") |
|
|
|
total_loss = 0 |
|
if self.local_rank == 0 and self.report_metric_at_train: |
|
for metric in self.metrics: |
|
metric.clear() |
|
|
|
self.model.train() |
|
|
|
|
|
|
|
if self.world_size > 1: |
|
loader.sampler.set_epoch(self.epoch) |
|
|
|
if self.local_rank == 0: |
|
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') |
|
|
|
self.local_step = 0 |
|
|
|
for data in loader: |
|
|
|
|
|
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: |
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
self.model.update_extra_state() |
|
|
|
self.local_step += 1 |
|
self.global_step += 1 |
|
|
|
self.optimizer.zero_grad() |
|
|
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
pred_rgbs, pred_ws, loss = self.train_step(data) |
|
|
|
self.scaler.scale(loss).backward() |
|
self.scaler.step(self.optimizer) |
|
self.scaler.update() |
|
|
|
if self.scheduler_update_every_step: |
|
self.lr_scheduler.step() |
|
|
|
loss_val = loss.item() |
|
total_loss += loss_val |
|
|
|
if self.local_rank == 0: |
|
|
|
|
|
|
|
|
|
if self.use_tensorboardX: |
|
self.writer.add_scalar("train/loss", loss_val, self.global_step) |
|
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step) |
|
|
|
if self.scheduler_update_every_step: |
|
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}") |
|
else: |
|
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") |
|
pbar.update(loader.batch_size) |
|
|
|
if self.ema is not None: |
|
self.ema.update() |
|
|
|
average_loss = total_loss / self.local_step |
|
self.stats["loss"].append(average_loss) |
|
|
|
if self.local_rank == 0: |
|
pbar.close() |
|
if self.report_metric_at_train: |
|
for metric in self.metrics: |
|
self.log(metric.report(), style="red") |
|
if self.use_tensorboardX: |
|
metric.write(self.writer, self.epoch, prefix="train") |
|
metric.clear() |
|
|
|
if not self.scheduler_update_every_step: |
|
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): |
|
self.lr_scheduler.step(average_loss) |
|
else: |
|
self.lr_scheduler.step() |
|
|
|
self.log(f"==> Finished Epoch {self.epoch}.") |
|
|
|
|
|
def evaluate_one_epoch(self, loader, name=None): |
|
self.log(f"++> Evaluate {self.workspace} at epoch {self.epoch} ...") |
|
|
|
if name is None: |
|
name = f'{self.name}_ep{self.epoch:04d}' |
|
|
|
total_loss = 0 |
|
if self.local_rank == 0: |
|
for metric in self.metrics: |
|
metric.clear() |
|
|
|
self.model.eval() |
|
|
|
if self.ema is not None: |
|
self.ema.store() |
|
self.ema.copy_to() |
|
|
|
if self.local_rank == 0: |
|
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') |
|
|
|
with torch.no_grad(): |
|
self.local_step = 0 |
|
|
|
for data in loader: |
|
self.local_step += 1 |
|
|
|
with torch.cuda.amp.autocast(enabled=self.fp16): |
|
preds, preds_depth, loss = self.eval_step(data) |
|
|
|
|
|
if self.world_size > 1: |
|
dist.all_reduce(loss, op=dist.ReduceOp.SUM) |
|
loss = loss / self.world_size |
|
|
|
preds_list = [torch.zeros_like(preds).to(self.device) for _ in range(self.world_size)] |
|
dist.all_gather(preds_list, preds) |
|
preds = torch.cat(preds_list, dim=0) |
|
|
|
preds_depth_list = [torch.zeros_like(preds_depth).to(self.device) for _ in range(self.world_size)] |
|
dist.all_gather(preds_depth_list, preds_depth) |
|
preds_depth = torch.cat(preds_depth_list, dim=0) |
|
|
|
loss_val = loss.item() |
|
total_loss += loss_val |
|
|
|
|
|
if self.local_rank == 0: |
|
|
|
|
|
save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png') |
|
save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png') |
|
|
|
|
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
|
|
pred = preds[0].detach().cpu().numpy() |
|
pred = (pred * 255).astype(np.uint8) |
|
|
|
pred_depth = preds_depth[0].detach().cpu().numpy() |
|
pred_depth = (pred_depth * 255).astype(np.uint8) |
|
|
|
cv2.imwrite(save_path, cv2.cvtColor(pred, cv2.COLOR_RGB2BGR)) |
|
cv2.imwrite(save_path_depth, pred_depth) |
|
|
|
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") |
|
pbar.update(loader.batch_size) |
|
|
|
|
|
average_loss = total_loss / self.local_step |
|
self.stats["valid_loss"].append(average_loss) |
|
|
|
if self.local_rank == 0: |
|
pbar.close() |
|
if not self.use_loss_as_metric and len(self.metrics) > 0: |
|
result = self.metrics[0].measure() |
|
self.stats["results"].append(result if self.best_mode == 'min' else - result) |
|
else: |
|
self.stats["results"].append(average_loss) |
|
|
|
for metric in self.metrics: |
|
self.log(metric.report(), style="blue") |
|
if self.use_tensorboardX: |
|
metric.write(self.writer, self.epoch, prefix="evaluate") |
|
metric.clear() |
|
|
|
if self.ema is not None: |
|
self.ema.restore() |
|
|
|
self.log(f"++> Evaluate epoch {self.epoch} Finished.") |
|
|
|
def save_checkpoint(self, name=None, full=False, best=False): |
|
|
|
if name is None: |
|
name = f'{self.name}_ep{self.epoch:04d}' |
|
|
|
state = { |
|
'epoch': self.epoch, |
|
'global_step': self.global_step, |
|
'stats': self.stats, |
|
} |
|
|
|
if self.model.cuda_ray: |
|
state['mean_count'] = self.model.mean_count |
|
state['mean_density'] = self.model.mean_density |
|
|
|
if full: |
|
state['optimizer'] = self.optimizer.state_dict() |
|
state['lr_scheduler'] = self.lr_scheduler.state_dict() |
|
state['scaler'] = self.scaler.state_dict() |
|
if self.ema is not None: |
|
state['ema'] = self.ema.state_dict() |
|
|
|
if not best: |
|
|
|
state['model'] = self.model.state_dict() |
|
|
|
file_path = f"{name}.pth" |
|
|
|
self.stats["checkpoints"].append(file_path) |
|
|
|
if len(self.stats["checkpoints"]) > self.max_keep_ckpt: |
|
old_ckpt = os.path.join(self.ckpt_path, self.stats["checkpoints"].pop(0)) |
|
if os.path.exists(old_ckpt): |
|
os.remove(old_ckpt) |
|
|
|
torch.save(state, os.path.join(self.ckpt_path, file_path)) |
|
|
|
else: |
|
if len(self.stats["results"]) > 0: |
|
if self.stats["best_result"] is None or self.stats["results"][-1] < self.stats["best_result"]: |
|
self.log(f"[INFO] New best result: {self.stats['best_result']} --> {self.stats['results'][-1]}") |
|
self.stats["best_result"] = self.stats["results"][-1] |
|
|
|
|
|
if self.ema is not None: |
|
self.ema.store() |
|
self.ema.copy_to() |
|
|
|
state['model'] = self.model.state_dict() |
|
|
|
if self.ema is not None: |
|
self.ema.restore() |
|
|
|
torch.save(state, self.best_path) |
|
else: |
|
self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.") |
|
|
|
def load_checkpoint(self, checkpoint=None, model_only=False): |
|
if checkpoint is None: |
|
checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/*.pth')) |
|
if checkpoint_list: |
|
checkpoint = checkpoint_list[-1] |
|
self.log(f"[INFO] Latest checkpoint is {checkpoint}") |
|
else: |
|
self.log("[WARN] No checkpoint found, model randomly initialized.") |
|
return |
|
|
|
checkpoint_dict = torch.load(checkpoint, map_location=self.device) |
|
|
|
if 'model' not in checkpoint_dict: |
|
self.model.load_state_dict(checkpoint_dict) |
|
self.log("[INFO] loaded model.") |
|
return |
|
|
|
missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False) |
|
self.log("[INFO] loaded model.") |
|
if len(missing_keys) > 0: |
|
self.log(f"[WARN] missing keys: {missing_keys}") |
|
if len(unexpected_keys) > 0: |
|
self.log(f"[WARN] unexpected keys: {unexpected_keys}") |
|
|
|
if self.ema is not None and 'ema' in checkpoint_dict: |
|
try: |
|
self.ema.load_state_dict(checkpoint_dict['ema']) |
|
self.log("[INFO] loaded EMA.") |
|
except: |
|
self.log("[WARN] failed to loaded EMA.") |
|
|
|
if self.model.cuda_ray: |
|
if 'mean_count' in checkpoint_dict: |
|
self.model.mean_count = checkpoint_dict['mean_count'] |
|
if 'mean_density' in checkpoint_dict: |
|
self.model.mean_density = checkpoint_dict['mean_density'] |
|
|
|
if model_only: |
|
return |
|
|
|
self.stats = checkpoint_dict['stats'] |
|
self.epoch = checkpoint_dict['epoch'] |
|
self.global_step = checkpoint_dict['global_step'] |
|
self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}") |
|
|
|
if self.optimizer and 'optimizer' in checkpoint_dict: |
|
try: |
|
self.optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
self.log("[INFO] loaded optimizer.") |
|
except: |
|
self.log("[WARN] Failed to load optimizer.") |
|
|
|
if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict: |
|
try: |
|
self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler']) |
|
self.log("[INFO] loaded scheduler.") |
|
except: |
|
self.log("[WARN] Failed to load scheduler.") |
|
|
|
if self.scaler and 'scaler' in checkpoint_dict: |
|
try: |
|
self.scaler.load_state_dict(checkpoint_dict['scaler']) |
|
self.log("[INFO] loaded scaler.") |
|
except: |
|
self.log("[WARN] Failed to load scaler.") |