Wiam's picture
End of training
1fff427 verified
---
library_name: transformers
license: apache-2.0
base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v2
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 0.8043478260869565
- name: F1
type: f1
value: 0.7171293871136721
- name: Precision
type: precision
value: 0.6469754253308129
- name: Recall
type: recall
value: 0.8043478260869565
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v2
This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8522
- Accuracy: {'accuracy': 0.8043478260869565}
- F1: 0.7171
- Precision: 0.6470
- Recall: 0.8043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:|
| 0.6078 | 0.4854 | 25 | 0.8682 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
| 0.7269 | 0.9709 | 50 | 0.8559 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
| 0.6815 | 1.4563 | 75 | 0.8204 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
| 0.6144 | 1.9417 | 100 | 0.8417 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
| 0.6246 | 2.4272 | 125 | 0.8454 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
| 0.5687 | 2.9126 | 150 | 0.8527 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1