{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7edc25da8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7edc25da80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7edc25da8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7edc25da81f0>", "_build": "<function ActorCriticPolicy._build at 0x7edc25da8280>", "forward": "<function ActorCriticPolicy.forward at 0x7edc25da8310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7edc25da83a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7edc25da8430>", "_predict": "<function ActorCriticPolicy._predict at 0x7edc25da84c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7edc25da8550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7edc25da85e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7edc25da8670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7edc25da0400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726155578783530744, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrqdr6PehS87jy6OSRwazfbZng9Cv3auAAAgD8AAIA/M02ZPI9AOzvSOzQ9Slk0vl7lZ7vz0Z+7AAAAAAAAAAAaxYU9ax9lP+V4fD3dI+m+l2GPPFICkTwAAAAAAAAAAFAzgD6OMZ+86jrQu4sq5DmwDQq+klmnOgAAgD8AAIA/c2vtPYWBrrtIefq8k3HlvSCWkrwEWbG+AACAPwAAgD+NelI+/wKhP33pzD6ABDO/z3EpPub6kj0AAAAAAAAAAPpYOD7xrjc8TZjuODto/jZUosY9ptEVuAAAgD8AAIA/dtLIPmvPzD02sSS8xc2ruu+oRj4amJE7AACAPwAAgD8q9WK+8Ct4P4EJPb4XfgC/q5xzviuTCj0AAAAAAAAAAGB+M76edzc/IJYgO++Yt779WMq94Pm0PQAAAAAAAAAAGnibPRTorLrHbr46Sr0XPDUgpDpCWwm9AACAPwAAgD9TQB++xSCmPMueCj7PRn2+BF2YPEBxdz0AAAAAAAAAAHM+eL4f0508jgkKt+c3dDWHTCq+Jg4vNgAAgD8AAIA/Zn7Du8EmtT+Osxq/y9BEPte/4jsuKww+AAAAAAAAAABG824+LNCPPL4BHzu6V4A51tUYPnsRR7oAAIA/AACAPyZ/Bj7SWOa7rlMPPYNdwjx64Eu9WYugPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/+/m9xp+OMAWyUS/SMAXSUR0CZS13kPtladX2UKGgGR0Bwcht8/lhgaAdL82gIR0CZS+mQKa5PdX2UKGgGR0Bs7jLlmvnsaAdNHwFoCEdAmU3KHwgDBHV9lChoBkdAcMSnvUjLS2gHS+hoCEdAmU96gRK6F3V9lChoBkdAbvsaCL/CImgHS+5oCEdAmVGT8pCrtHV9lChoBkdAbasvpyIYWWgHTQABaAhHQJlSgF6iTMd1fZQoaAZHQHFV3qeK8+RoB0v3aAhHQJlUFqL0jC51fZQoaAZHQHEGfbblA/toB00VAWgIR0CZVL2WIGhVdX2UKGgGR0Bka+CmMwUQaAdN6ANoCEdAmVVfZqVQh3V9lChoBkdAcR/gQHzH0mgHS+ZoCEdAmVc1p9JBgXV9lChoBkdAaaS+IuXeFmgHTbACaAhHQJm0kVFhG6R1fZQoaAZHQHDUQMx46fdoB0vXaAhHQJm0nE3sHB11fZQoaAZHQGO9uWrwOONoB03oA2gIR0CZtd2TgVGkdX2UKGgGR0BypSvnr6ciaAdNZwFoCEdAmbd4wmE5AHV9lChoBkdAbDD2/zreImgHTSUBaAhHQJm35ruYx+N1fZQoaAZHQHB8omb9ZRtoB0v5aAhHQJm4gbcXWOJ1fZQoaAZHQGheP6KtPpJoB02tAWgIR0CZuM9AX2ugdX2UKGgGR0BuJgG0NSZSaAdL92gIR0CZuOssg+yJdX2UKGgGR0BsXXKnvUjLaAdL7GgIR0CZue2V3Ux3dX2UKGgGR0BsMVFBppN9aAdNKgFoCEdAmbpLOeJ53XV9lChoBkdAcOyhKlHjImgHS+doCEdAmcCXvx6OYXV9lChoBkdAYOvk3juKGmgHTegDaAhHQJnA+3H7xd91fZQoaAZHQEqAGTLW7OFoB0u0aAhHQJnBNUYKpkx1fZQoaAZHQG4Gr0rbxmVoB0vWaAhHQJnBQXj2i+N1fZQoaAZHQHCgjGPxQSBoB0v2aAhHQJnBX1xsEaF1fZQoaAZHQG9dGwRoRI1oB0vjaAhHQJnDtJOFg2J1fZQoaAZHQHB47JW/8EVoB0vtaAhHQJnETt7a7Ep1fZQoaAZHQG+X61b7j1hoB0vdaAhHQJnEnT/hl191fZQoaAZHQHI/DQE6kqNoB0v6aAhHQJnE3VbzK9x1fZQoaAZHQGEHPvSc9W9oB03oA2gIR0CZxXdXDFZQdX2UKGgGR0BxjYCOmzjWaAdNAgFoCEdAmcYumvW6LHV9lChoBkdAcHhjGT9sJ2gHTVoBaAhHQJnHPUx20Rh1fZQoaAZHQGABCd8Rcu9oB03oA2gIR0CZx/5KvmozdX2UKGgGR0Brf5MSK3uvaAdNwQJoCEdAmciR7RfF73V9lChoBkdAXvHqxC6YmmgHTegDaAhHQJnI+rELpiZ1fZQoaAZHQHBcn84xUNtoB0vsaAhHQJnJwdaMaS91fZQoaAZHQGJVXNcGC7NoB03oA2gIR0CZyjhRqGlAdX2UKGgGR0Bu+whwEQoTaAdNIwFoCEdAmcshTn7pFHV9lChoBkdAb/yWfK6nSGgHS+5oCEdAmctlMdtEX3V9lChoBkdAb57z/6wdKmgHTSwBaAhHQJnLfLt/nW91fZQoaAZHQG5EB+OOsDJoB0vtaAhHQJnMCHoHLRt1fZQoaAZHQHFHuWv8qF1oB0v4aAhHQJnMg4Nqgyx1fZQoaAZHQG358Z9/jKhoB0vyaAhHQJnNeDYh+v11fZQoaAZHQGvgWJaaCtloB00mAWgIR0CZzmxO+IuXdX2UKGgGR0Bvx8B6rvLHaAdL9WgIR0CZzz8b70nPdX2UKGgGR0A4a6ySmqHXaAdLwGgIR0CZz2uDSPU8dX2UKGgGR0Bqx35eqrBCaAdNewFoCEdAmdAh5cC5mXV9lChoBkdAcUMJD3M6imgHS/NoCEdAmdA4p+c6NnV9lChoBkdAbcRCeEqUeWgHTQUBaAhHQJnQVschkiF1fZQoaAZHQHByju4PPLRoB0v7aAhHQJnRrEGZ/kN1fZQoaAZHQHA9NsnAqNJoB0viaAhHQJnSSQNkOI91fZQoaAZHQHBkXSKFZgZoB0vXaAhHQJnSjBbfP5Z1fZQoaAZHQHDFi9h7VrhoB0vUaAhHQJnTABLf1pV1fZQoaAZHQHAdS8zyjHpoB0v8aAhHQJnVb/EOy3V1fZQoaAZHQHDZOdCmdiFoB0vvaAhHQJnWFsN2C/Z1fZQoaAZHQG3p0S7GvOhoB0voaAhHQJnXxuuRs/J1fZQoaAZHQG5d55JK8L9oB00HAWgIR0CZ2CqSHM2WdX2UKGgGR0BvY7KgZjx1aAdL/mgIR0CZ2uPqs2ehdX2UKGgGR0BtYKGxlg+haAdL4WgIR0CZ23G0NSZSdX2UKGgGR0Bt/TfR/mT1aAdNBAFoCEdAmdxVeBxxUHV9lChoBkdAcGr9nbqQimgHS9xoCEdAmd5byxzJZHV9lChoBkdAb+Sz3yqdYmgHS9VoCEdAmd7SxzJZGXV9lChoBkdAcENFHJ9y92gHS+poCEdAmeGss189fXV9lChoBkdAcNgLtNSIg2gHTQIBaAhHQJnjKDqW1MN1fZQoaAZHQHBdX2AXl8xoB02jAmgIR0CZ45Z7ojfOdX2UKGgGR0Bwx4PGyX2NaAdL2WgIR0CZ5D+De0ojdX2UKGgGR0BjwhllK9PDaAdN6ANoCEdAmeS8vduYQnV9lChoBkdAXRZRzijtX2gHTegDaAhHQJnlOErXlKd1fZQoaAZHQGy1r2xptaZoB0vraAhHQJnliEal1r91fZQoaAZHQEl8ij+JgstoB0vHaAhHQJnmrbwjMV11fZQoaAZHQG3/jMNc4YJoB0vnaAhHQJnoSlWOp851fZQoaAZHQGMrP7m+0w9oB03oA2gIR0CZ6/OcUdq+dX2UKGgGR0BvENQuVX3haAdL8GgIR0CZ6/RlpXZHdX2UKGgGR0Bv2l3r2QGOaAdL3GgIR0CZ7Kf6GgzydX2UKGgGR0BtnO69TP0JaAdL7WgIR0CZ7hBj4HopdX2UKGgGR0Bt87beuV5baAdNsAFoCEdAme+KFdszmHV9lChoBkdAbD7OxB3RomgHS/5oCEdAme/gUL2HtXV9lChoBkdAb4kDGLk0amgHS/9oCEdAmfCAs052hnV9lChoBkdAcLwk1dgOSWgHS/loCEdAmfFDQVsUI3V9lChoBkdAcRAzoEB8yGgHS+hoCEdAmfH82NvOyHV9lChoBkdAYMNo5ggHNWgHTegDaAhHQJnzKHck+ot1fZQoaAZHQHENcN+b3GpoB00xAWgIR0CZ85tihFmWdX2UKGgGR0BwVa4gA6uGaAdL4GgIR0CZ86tcOby6dX2UKGgGR0BwMPjT8YQ8aAdL5mgIR0CZ9ps3AEdOdX2UKGgGR0BkHDtw71ZlaAdN6ANoCEdAmffjMRpUP3V9lChoBkdAbJFFxXGOuWgHS+doCEdAmfgKJQ+EAnV9lChoBkdAbatVOKwY+GgHS9hoCEdAmfhugYgq3HV9lChoBkdAYZcL8aXKKmgHTegDaAhHQJn45cTrVvx1fZQoaAZHQGHyPfCQ9zRoB03oA2gIR0CZ+RIDYAbRdX2UKGgGR0BwzxHkLhJiaAdNDAFoCEdAmfqy4J/oaHV9lChoBkdAbuobKA8SwmgHS+ZoCEdAmfsr2g398HV9lChoBkdAZOHo5ggHNWgHTegDaAhHQJn7KBVdX1d1fZQoaAZHQG9yfPPcBU9oB00BAWgIR0CZ+0LqD9OzdX2UKGgGR0BwrA2XLNfPaAdL32gIR0CZ+0f0Eov0dX2UKGgGR0BxC9h3JPqLaAdNFQFoCEdAmftoX0oSc3V9lChoBkdAcH0kiliz9mgHS/NoCEdAmf9Q9JSR83V9lChoBkdAcOgZqVQhwGgHS9toCEdAmf+tAcDKYHV9lChoBkdAbV35eqrBCWgHS/1oCEdAmf/RYaHbh3V9lChoBkdAbWsvhZQpF2gHTYABaAhHQJoACraM72d1fZQoaAZHQG7ZnVXmvGJoB0vgaAhHQJoBjmxMWXV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |