Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
mergekit
Merge
chinese
arabic
english
multilingual
german
french
gagan3012/MetaModel
jeonsworld/CarbonVillain-en-10.7B-v2
jeonsworld/CarbonVillain-en-10.7B-v4
TomGrc/FusionNet_linear
DopeorNope/SOLARC-M-10.7B
VAGOsolutions/SauerkrautLM-SOLAR-Instruct
upstage/SOLAR-10.7B-Instruct-v1.0
fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
conversational
text-generation-inference
Inference Endpoints
metadata
license: apache-2.0
tags:
- moe
- mergekit
- merge
- chinese
- arabic
- english
- multilingual
- german
- french
- gagan3012/MetaModel
- jeonsworld/CarbonVillain-en-10.7B-v2
- jeonsworld/CarbonVillain-en-10.7B-v4
- TomGrc/FusionNet_linear
- DopeorNope/SOLARC-M-10.7B
- VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- upstage/SOLAR-10.7B-Instruct-v1.0
- fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
model-index:
- name: MetaModel_moex8
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.16
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.29
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.91
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.35
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/MetaModel_moex8
name: Open LLM Leaderboard
MetaModel_moex8
This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
- gagan3012/MetaModel
- jeonsworld/CarbonVillain-en-10.7B-v2
- jeonsworld/CarbonVillain-en-10.7B-v4
- TomGrc/FusionNet_linear
- DopeorNope/SOLARC-M-10.7B
- VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- upstage/SOLAR-10.7B-Instruct-v1.0
- fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
🧩 Configuration
dtype: bfloat16
experts:
- positive_prompts:
- ''
source_model: gagan3012/MetaModel
- positive_prompts:
- ''
source_model: jeonsworld/CarbonVillain-en-10.7B-v2
- positive_prompts:
- ''
source_model: jeonsworld/CarbonVillain-en-10.7B-v4
- positive_prompts:
- ''
source_model: TomGrc/FusionNet_linear
- positive_prompts:
- ''
source_model: DopeorNope/SOLARC-M-10.7B
- positive_prompts:
- ''
source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- positive_prompts:
- ''
source_model: upstage/SOLAR-10.7B-Instruct-v1.0
- positive_prompts:
- ''
source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
gate_mode: hidden
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gagan3012/MetaModel_moex8"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.39 |
AI2 Reasoning Challenge (25-Shot) | 71.16 |
HellaSwag (10-Shot) | 88.38 |
MMLU (5-Shot) | 66.29 |
TruthfulQA (0-shot) | 71.91 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 65.35 |