mega-base-multiple-choice-fp16-v4

This model is a fine-tuned version of mnaylor/mega-base-wikitext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Accuracy: 0.4964
  • Precision: 0.4964
  • Recall: 0.5023
  • F1: 0.4993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1024
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 24000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 34 0.6932 0.4970 0.4971 0.5023 0.4997
No log 2.0 68 0.6932 0.4975 0.4975 0.5026 0.5001
No log 3.0 102 0.6932 0.4974 0.4974 0.5020 0.4997
No log 4.0 136 0.6932 0.4995 0.4995 0.5043 0.5019
No log 5.0 170 0.6932 0.4975 0.4975 0.5023 0.4999
No log 6.0 204 0.6932 0.4987 0.4987 0.5043 0.5015
No log 7.0 238 0.6932 0.4960 0.4961 0.5026 0.4993
No log 8.0 272 0.6932 0.4967 0.4967 0.5036 0.5002
No log 9.0 306 0.6932 0.4965 0.4966 0.5 0.4983
No log 10.0 340 0.6932 0.4964 0.4964 0.5023 0.4993

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
7.34M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for Xenopilus/mega-base-multiple-choice-fp16-v4

Finetuned
(14)
this model