|
--- |
|
base_model: google/owlvit-base-patch32 |
|
library_name: transformers.js |
|
pipeline_tag: zero-shot-object-detection |
|
--- |
|
|
|
https://huggingface.co/google/owlvit-base-patch32 with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32`. |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32'); |
|
|
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png'; |
|
const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag']; |
|
const output = await detector(url, candidate_labels); |
|
// [ |
|
// { score: 0.24392342567443848, label: 'human face', box: { xmin: 180, ymin: 67, xmax: 274, ymax: 175 } }, |
|
// { score: 0.15129457414150238, label: 'american flag', box: { xmin: 0, ymin: 4, xmax: 106, ymax: 513 } }, |
|
// { score: 0.13649864494800568, label: 'helmet', box: { xmin: 277, ymin: 337, xmax: 511, ymax: 511 } }, |
|
// { score: 0.10262022167444229, label: 'rocket', box: { xmin: 352, ymin: -1, xmax: 463, ymax: 287 } } |
|
// ] |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/rNLU-bl1_H0HrPgkPMhso.png) |
|
|
|
|
|
**Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32` (additional parameters). |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32'); |
|
|
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beach.png'; |
|
const candidate_labels = ['hat', 'book', 'sunglasses', 'camera']; |
|
const output = await detector(url, candidate_labels, { topk: 4, threshold: 0.05 }); |
|
// [ |
|
// { score: 0.1606510728597641, label: 'sunglasses', box: { xmin: 347, ymin: 229, xmax: 429, ymax: 264 } }, |
|
// { score: 0.08935828506946564, label: 'hat', box: { xmin: 38, ymin: 174, xmax: 258, ymax: 364 } }, |
|
// { score: 0.08530698716640472, label: 'camera', box: { xmin: 187, ymin: 350, xmax: 260, ymax: 411 } }, |
|
// { score: 0.08349756896495819, label: 'book', box: { xmin: 261, ymin: 280, xmax: 494, ymax: 425 } } |
|
// ] |
|
``` |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/OKHu5M0RcAlwPkydxBZyB.png) |
|
|
|
--- |
|
|
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |