Uploaded model

  • Developed by: Xhaheen
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-7b-bnb-4bit

This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.

Inference With Unsloth on colab



import torch
major_version, minor_version = torch.cuda.get_device_capability()
 

!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass



from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False 
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Xhaheen/Shaheen_Gemma_Urdu_",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    device_map="auto"
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

input_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""

input_text = input_prompt.format(
        "دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
        "قابل تجدید توانائی کے استعمال کی اہمیت", # input
        "", # output - leave this blank for generation!
    )

inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)

response = tokenizer.batch_decode(outputs)

Inference With Inference with HuggingFace transformers


from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model = AutoPeftModelForCausalLM.from_pretrained(
    "Xhaheen/Shaheen_Gemma_Urdu_",
    load_in_4bit = False
)
tokenizer = AutoTokenizer.from_pretrained("Xhaheen/Shaheen_Gemma_Urdu_")


input_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""



input_text = input_prompt.format(
        "دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
        "قابل تجدید توانائی کے استعمال کی اہمیت", # input
        "", # output - leave this blank for generation!
    )

inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)[0]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Xhaheen/Shaheen_Gemma_Urdu_

Finetuned
(203)
this model