hit-sr / README.md
XiangZ's picture
Update README.md
26f4236 verified
metadata
pipeline_tag: image-to-image
tags:
  - HiT-SR
  - image super-resolution
  - transformer
  - efficient transformer

HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution

[Github] | [Paper] | [Supp] | [Video] | [Visual Results]

HiT-SR is a general strategy to improve transformer-based SR methods. We apply our HiT-SR approach to improve SwinIR-Light, SwinIR-NG and SRFormer-Light, corresponding to our HiT-SIR, HiT-SNG, and HiT-SRF. Compared with the original structure, our improved models achieve better SR performance while reducing computational burdens.

πŸ› οΈ Setup

Install the dependencies under the working directory:

git clone https://huggingface.co/XiangZ/hit-sr
cd hit-sr
pip install -r requirements.txt

πŸš€ Usage

For each HiT-SR model, we provide 2x, 3x, 4x upscaling versions:

Repo Name Model Upscale
XiangZ/hit-sir-2x HiT-SIR 2x
XiangZ/hit-sir-3x HiT-SIR 3x
XiangZ/hit-sir-4x HiT-SIR 4x
XiangZ/hit-sng-2x HiT-SNG 2x
XiangZ/hit-sng-3x HiT-SNG 3x
XiangZ/hit-sng-4x HiT-SNG 4x
XiangZ/hit-srf-2x HiT-SRF 2x
XiangZ/hit-srf-3x HiT-SRF 3x
XiangZ/hit-srf-4x HiT-SRF 4x

To test the model (use hit-srf-4x as an example):

from hit_sir_arch import HiT_SIR
from hit_sng_arch import HiT_SNG
from hit_srf_arch import HiT_SRF
import cv2

# use GPU (True) or CPU (False)
cuda_flag = True

# initialize model (change model and upscale according to your setting)
model = HiT_SRF(upscale=4) 

# load model (change repo_name according to your setting)
repo_name = "XiangZ/hit-srf-4x"
model = model.from_pretrained(repo_name)
if cuda_flag:
    model.cuda()

# test and save results
sr_results = model.infer_image("path-to-input-image", cuda=cuda_flag)
cv2.imwrite("path-to-output-location", sr_results)

πŸ“Ž Citation

If you find the code helpful in your research or work, please consider citing the following paper.

@inproceedings{zhang2024hitsr,
    title={HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution},
    author={Zhang, Xiang and Zhang, Yulun and Yu, Fisher},
    booktitle={ECCV},
    year={2024}
}