Model Card for Model ID

This model is optimized for Material Science by continuing pertaining on over 1 million Material science academic articles based on LLaMa-2-7b. And further finetuned on materials science instructions.

  • Developed by: [UCSB]

  • Language(s) (NLP): [More Information Needed]

  • License: [More Information Needed]

  • Finetuned from model [optional]: [LLaMa-2]

  • Paper [optional]: [https://arxiv.org/pdf/2401.01089.pdf]

  • Demo [optional]: [More Information Needed]

How to Get Started with the Model

from transformers import LlamaTokenizer, LlamaForCausalLM
import torch

tokenizer = LlamaTokenizer.from_pretrained("Xianjun/Quokka-7b-instruct ")
model = LlamaForCausalLM.from_pretrained("Xianjun/Quokka-7b-instruct ").half().to("cuda")

instruction = "How to ..."
batch = tokenizer(instruction, return_tensors="pt", add_special_tokens=False).to("cuda")
with torch.no_grad():
    output = model.generate(**batch, max_new_tokens=512, temperature=0.7, do_sample=True)
    response = tokenizer.decode(output[0], skip_special_tokens=True)

Citation

If you find Quokka useful in your research, please cite the following paper:

@inproceedings{Yang2024QuokkaAO,
  title={Quokka: An Open-source Large Language Model ChatBot for Material Science},
  author={Xianjun Yang and Stephen Wilson and Linda Ruth Petzold},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:266725577}
}
Downloads last month
34
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Xianjun/Quokka-7b-instruct

Quantizations
2 models