Example Usage
This section demonstrates how to use the XiaoZhang98/byT5-DRS
model with the Hugging Face Transformers library to process an example sentence.
from transformers import AutoTokenizer, T5ForConditionalGeneration
# Initialize the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('XiaoZhang98/byT5-DRS', max_length=512)
model = T5ForConditionalGeneration.from_pretrained("XiaoZhang98/byT5-DRS")
# Example sentence
example = "I am a student."
# Tokenize and prepare the input
x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids']
# Generate output
output = model.generate(x)
# Decode and print the output text
pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(pred_text)
- Downloads last month
- 205
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.