|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-smallmt5-finetuned-on-en-yor-BBC-news |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-smallmt5-finetuned-on-en-yor-BBC-news |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9640 |
|
- Rouge1: 31.9414 |
|
- Rouge2: 10.6476 |
|
- Rougel: 27.9541 |
|
- Rougelsum: 27.974 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 3.547 | 1.0 | 1588 | 3.2871 | 30.6764 | 9.756 | 26.925 | 26.9536 | |
|
| 3.6705 | 2.0 | 3176 | 3.1250 | 30.387 | 9.6758 | 26.7739 | 26.8351 | |
|
| 3.4985 | 3.0 | 4764 | 3.0648 | 31.2651 | 10.2554 | 27.4377 | 27.4828 | |
|
| 3.3861 | 4.0 | 6352 | 3.0187 | 31.0368 | 10.0801 | 27.1596 | 27.1924 | |
|
| 3.3116 | 5.0 | 7940 | 3.0051 | 31.9967 | 10.6125 | 28.0438 | 28.08 | |
|
| 3.2603 | 6.0 | 9528 | 2.9801 | 31.7684 | 10.6465 | 27.8597 | 27.8956 | |
|
| 3.2242 | 7.0 | 11116 | 2.9681 | 31.6692 | 10.4338 | 27.7238 | 27.7438 | |
|
| 3.2007 | 8.0 | 12704 | 2.9640 | 31.9414 | 10.6476 | 27.9541 | 27.974 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|