|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
model-index: |
|
- name: dolphin-2.6-mistral-7b-dpo-laser-sft-glaive-function-calling-v2-ep1-lora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# dolphin-2.6-mistral-7b-dpo-laser-sft-glaive-function-calling-v2-ep1-lora |
|
|
|
This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on the https://huggingface.co/datasets/Yhyu13/glaive-function-calling-v2-llama-factory-convert/blob/main/simple-function-calling-v2_converted_5000_with_function_call_only.json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0605 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.2548 | 0.09 | 100 | 0.1148 | |
|
| 0.1149 | 0.18 | 200 | 0.0914 | |
|
| 0.0871 | 0.27 | 300 | 0.0831 | |
|
| 0.0865 | 0.35 | 400 | 0.0760 | |
|
| 0.0802 | 0.44 | 500 | 0.0718 | |
|
| 0.0689 | 0.53 | 600 | 0.0702 | |
|
| 0.0649 | 0.62 | 700 | 0.0649 | |
|
| 0.0637 | 0.71 | 800 | 0.0632 | |
|
| 0.0698 | 0.8 | 900 | 0.0619 | |
|
| 0.0648 | 0.88 | 1000 | 0.0608 | |
|
| 0.0654 | 0.97 | 1100 | 0.0605 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |