intit_model

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2486
  • Wer: 0.4348
  • Cer: 0.9047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9753 20.0 100 1.3804 0.5072 0.9054
0.5395 40.0 200 1.5495 0.4444 0.9062
0.3735 60.0 300 1.7729 0.4396 0.9056
0.2427 80.0 400 1.9016 0.4348 0.9063
0.2389 100.0 500 2.0569 0.4348 0.9061
0.1822 120.0 600 2.0684 0.4300 0.9050
0.1578 140.0 700 2.1332 0.4396 0.9049
0.1547 160.0 800 2.2138 0.4444 0.9047
0.1807 180.0 900 2.2467 0.4348 0.9047
0.1427 200.0 1000 2.2486 0.4348 0.9047

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Yoru1010/intit_model

Finetuned
(122)
this model