nielsr's picture
nielsr HF staff
Add pipeline tag and license to model card, link to code
6378f75 verified
|
raw
history blame
2.98 kB
---
library_name: transformers
tags: []
pipeline_tag: image-text-to-text
license: mit
---
# Fine-Grained Visual Classification on HAM10000
Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX).
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
This model is a fine-tuned multimodal foundation model developed on the [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7B-hf) base, optimized for fine-grained skin lesion classification and explainability using the HAM10000 dataset.
## Key Details
- **Base Model:** LLaVA-1.5-7B
- **Dataset:** HAM10000
- **Innovation:**
- **Self-Synthesized Data:** Generates interpretable explanations by extracting lesion-specific visual concepts using the Information Bottleneck principle.
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to progressively improve classification accuracy and explanation quality.
- **Intended Use:** Skin lesion classification with human-verifiable explanations for dermatological analysis.
## How to Use
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "YuchengShi/LLaVA-v1.5-7B-HAM10000"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What type of skin lesion is this?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "ham10000/test1.png"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to("cuda", torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
## Training & Evaluation
- **Training:** Fine-tuned using LoRA on HAM10000 with iterative rejection sampling.
- **Evaluation:** Demonstrates higher accuracy and robust, interpretable explanations compared to baseline models.
## Citation
If you use this model, please cite:
```bibtex
@inproceedings{
shi2025enhancing,
title={Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data},
author={Yucheng Shi and Quanzheng Li and Jin Sun and Xiang Li and Ninghao Liu},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=lHbLpwbEyt}
}
```
## Contact
For any questions, suggestions, or issues, please open an issue on GitHub or contact us at [[email protected]](mailto:[email protected]).
Github repository: https://github.com/sycny/SelfSynthX