BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Yuki20/bge-base-financial-matryoshka")
# Run inference
sentences = [
"As of December 31, 2023, the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities were $1,784 million and $1,723 million respectively.",
"What was the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities as of December 31, 2023?",
'How does the company advance autonomous vehicle technology?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6871 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6871 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6871 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.7982 |
cosine_mrr@10 | 0.7633 |
cosine_map@100 | 0.767 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.69 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8543 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.69 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1709 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.69 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8543 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.7977 |
cosine_mrr@10 | 0.7636 |
cosine_map@100 | 0.7675 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6857 |
cosine_accuracy@3 | 0.8143 |
cosine_accuracy@5 | 0.8514 |
cosine_accuracy@10 | 0.8957 |
cosine_precision@1 | 0.6857 |
cosine_precision@3 | 0.2714 |
cosine_precision@5 | 0.1703 |
cosine_precision@10 | 0.0896 |
cosine_recall@1 | 0.6857 |
cosine_recall@3 | 0.8143 |
cosine_recall@5 | 0.8514 |
cosine_recall@10 | 0.8957 |
cosine_ndcg@10 | 0.7916 |
cosine_mrr@10 | 0.7582 |
cosine_map@100 | 0.7624 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6757 |
cosine_accuracy@3 | 0.8 |
cosine_accuracy@5 | 0.8414 |
cosine_accuracy@10 | 0.8886 |
cosine_precision@1 | 0.6757 |
cosine_precision@3 | 0.2667 |
cosine_precision@5 | 0.1683 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.6757 |
cosine_recall@3 | 0.8 |
cosine_recall@5 | 0.8414 |
cosine_recall@10 | 0.8886 |
cosine_ndcg@10 | 0.782 |
cosine_mrr@10 | 0.7478 |
cosine_map@100 | 0.7524 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6414 |
cosine_accuracy@3 | 0.7657 |
cosine_accuracy@5 | 0.7957 |
cosine_accuracy@10 | 0.8586 |
cosine_precision@1 | 0.6414 |
cosine_precision@3 | 0.2552 |
cosine_precision@5 | 0.1591 |
cosine_precision@10 | 0.0859 |
cosine_recall@1 | 0.6414 |
cosine_recall@3 | 0.7657 |
cosine_recall@5 | 0.7957 |
cosine_recall@10 | 0.8586 |
cosine_ndcg@10 | 0.748 |
cosine_mrr@10 | 0.7129 |
cosine_map@100 | 0.7185 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 45.58 tokens
- max: 289 tokens
- min: 9 tokens
- mean: 20.34 tokens
- max: 41 tokens
- Samples:
positive anchor Billed business grew significantly over the past two years, increasing from $228.2 billion in 2021 to $281.6 billion in 2022, and reaching $329.5 billion in 2023.
How did billed business figures change from 2021 to 2023 as stated in the text?
The Federal Reserve may limit an FHC’s ability to conduct permissible activities if it or any of its depository institution subsidiaries fails to maintain a well-capitalized and well-managed status. If non-compliant after 180 days, the Federal Reserve may require the FHC to divest its depository institution subsidiaries or cease all FHC Activities.
What happens if an FHC does not meet the Federal Reserve's eligibility requirements?
For the fiscal year ending January 28, 2023, the basic net income per share was calculated to be $7.24, based on the net income and weighted average number of shares outstanding.
What was the basic net income per share in the fiscal year ending January 28, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.588 | - | - | - | - | - |
0.9746 | 12 | - | 0.7593 | 0.7550 | 0.7472 | 0.7347 | 0.6970 |
1.6244 | 20 | 0.7059 | - | - | - | - | - |
1.9492 | 24 | - | 0.7623 | 0.7652 | 0.7559 | 0.7517 | 0.7127 |
2.4365 | 30 | 0.4826 | - | - | - | - | - |
2.9239 | 36 | - | 0.7675 | 0.7683 | 0.7603 | 0.7512 | 0.7166 |
3.2487 | 40 | 0.3992 | - | - | - | - | - |
3.8985 | 48 | - | 0.767 | 0.7675 | 0.7624 | 0.7524 | 0.7185 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Yuki20/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.687
- Cosine Accuracy@3 on dim 768self-reported0.829
- Cosine Accuracy@5 on dim 768self-reported0.857
- Cosine Accuracy@10 on dim 768self-reported0.907
- Cosine Precision@1 on dim 768self-reported0.687
- Cosine Precision@3 on dim 768self-reported0.276
- Cosine Precision@5 on dim 768self-reported0.171
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.687
- Cosine Recall@3 on dim 768self-reported0.829