KangalKhan-SharpEmerald-7B
KangalKhan-SharpEmerald-7B is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: teknium/OpenHermes-2.5-Mistral-7B
# No parameters necessary for base model
- model: argilla/CapybaraHermes-2.5-Mistral-7B
parameters:
density: 0.6
weight: 0.5
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B
parameters:
density: 0.6
weight: 0.5
merge_method: dare_ties
base_model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/KangalKhan-SharpEmerald-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.86 |
AI2 Reasoning Challenge (25-Shot) | 66.72 |
HellaSwag (10-Shot) | 85.40 |
MMLU (5-Shot) | 63.21 |
TruthfulQA (0-shot) | 56.52 |
Winogrande (5-shot) | 78.53 |
GSM8k (5-shot) | 62.77 |
- Downloads last month
- 57
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Yuma42/KangalKhan-SharpEmerald-7B
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.720
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.400
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.210
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard56.520
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.530
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard62.770