YAML Metadata
Error:
"widget" must be an array
mental_bert_classifier
This model is a fine-tuned version of Zamoranesis/mental_bert on hackathon-somos-nlp-2023/DiagTrast. It achieves the following results on the evaluation set:
- Loss: 0.2426
- F1 Class 0: 0.8852
- F1 Class 1: 0.9512
- F1 Class 2: 0.8421
- F1 Class 3: 0.8539
- F1 Class 4: 0.9412
- F1: 0.8947
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Class 0 | F1 Class 1 | F1 Class 2 | F1 Class 3 | F1 Class 4 | F1 |
---|---|---|---|---|---|---|---|---|---|
0.7979 | 6.25 | 100 | 0.3557 | 0.8421 | 0.9512 | 0.8214 | 0.8889 | 0.9091 | 0.8825 |
0.2559 | 12.5 | 200 | 0.2823 | 0.9333 | 0.9412 | 0.8364 | 0.8602 | 0.9362 | 0.9015 |
0.1963 | 18.75 | 300 | 0.2610 | 0.9180 | 0.9756 | 0.7778 | 0.8352 | 0.9231 | 0.8859 |
0.1717 | 25.0 | 400 | 0.2534 | 0.9180 | 0.9630 | 0.8 | 0.8261 | 0.9412 | 0.8897 |
0.1511 | 31.25 | 500 | 0.2476 | 0.8667 | 0.9512 | 0.8148 | 0.8298 | 0.96 | 0.8845 |
0.1501 | 37.5 | 600 | 0.2513 | 0.9 | 0.9630 | 0.8 | 0.8261 | 0.9231 | 0.8824 |
0.1427 | 43.75 | 700 | 0.2581 | 0.9180 | 0.9756 | 0.8475 | 0.8810 | 0.8889 | 0.9022 |
0.1457 | 50.0 | 800 | 0.2428 | 0.8852 | 0.9512 | 0.8 | 0.8261 | 0.92 | 0.8765 |
0.1311 | 56.25 | 900 | 0.2462 | 0.9 | 0.9512 | 0.8 | 0.8352 | 0.9231 | 0.8819 |
0.1346 | 62.5 | 1000 | 0.2426 | 0.8852 | 0.9512 | 0.8421 | 0.8539 | 0.9412 | 0.8947 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 113
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Zamoranesis/mental_bert_classifier
Base model
mental/mental-bert-base-uncased
Finetuned
Zamoranesis/mental_bert