|
--- |
|
base_model: mrm8488/t5-base-finetuned-common_gen |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: T5-mask-100-beam-3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# T5-mask-100-beam-3 |
|
|
|
This model is a fine-tuned version of [mrm8488/t5-base-finetuned-common_gen](https://huggingface.co/mrm8488/t5-base-finetuned-common_gen) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6461 |
|
- Bleu: 5.5434 |
|
- Gen Len: 14.3534 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| |
|
| 2.256 | 1.0 | 527 | 2.2936 | 6.9789 | 13.1364 | |
|
| 2.2149 | 2.0 | 1054 | 2.2944 | 7.0421 | 13.1366 | |
|
| 2.1975 | 3.0 | 1581 | 2.3005 | 6.9363 | 13.2412 | |
|
| 2.1766 | 4.0 | 2108 | 2.3055 | 6.8015 | 13.2558 | |
|
| 2.1635 | 5.0 | 2635 | 2.3066 | 6.9031 | 13.2852 | |
|
| 2.145 | 6.0 | 3162 | 2.3105 | 6.7477 | 13.4291 | |
|
| 2.1322 | 7.0 | 3689 | 2.3164 | 6.9102 | 13.3454 | |
|
| 2.1147 | 8.0 | 4216 | 2.3218 | 6.7552 | 13.4181 | |
|
| 2.1079 | 9.0 | 4743 | 2.3247 | 6.8419 | 13.4602 | |
|
| 2.0914 | 10.0 | 5270 | 2.3329 | 6.751 | 13.4266 | |
|
| 2.0803 | 11.0 | 5797 | 2.3354 | 6.6713 | 13.5381 | |
|
| 2.0675 | 12.0 | 6324 | 2.3379 | 6.7464 | 13.4975 | |
|
| 2.0565 | 13.0 | 6851 | 2.3399 | 6.7349 | 13.5582 | |
|
| 2.0459 | 14.0 | 7378 | 2.3443 | 6.7243 | 13.5358 | |
|
| 2.0351 | 15.0 | 7905 | 2.3470 | 6.7024 | 13.6242 | |
|
| 2.0246 | 16.0 | 8432 | 2.3563 | 6.6921 | 13.5607 | |
|
| 2.016 | 17.0 | 8959 | 2.3528 | 6.7559 | 13.6692 | |
|
| 2.0053 | 18.0 | 9486 | 2.3603 | 6.8006 | 13.5881 | |
|
| 1.9859 | 19.0 | 10013 | 2.3608 | 6.8255 | 13.7096 | |
|
| 1.975 | 20.0 | 10540 | 2.3695 | 6.7947 | 13.6324 | |
|
| 1.9674 | 21.0 | 11067 | 2.3731 | 6.8131 | 13.6732 | |
|
| 1.9582 | 22.0 | 11594 | 2.3766 | 6.7819 | 13.7409 | |
|
| 1.9483 | 23.0 | 12121 | 2.3754 | 6.8787 | 13.5938 | |
|
| 1.9443 | 24.0 | 12648 | 2.3836 | 6.6645 | 13.6747 | |
|
| 1.9337 | 25.0 | 13175 | 2.3865 | 6.7016 | 13.7514 | |
|
| 1.9265 | 26.0 | 13702 | 2.3891 | 6.8102 | 13.7718 | |
|
| 1.9184 | 27.0 | 14229 | 2.3962 | 6.7632 | 13.7377 | |
|
| 1.9134 | 28.0 | 14756 | 2.3994 | 6.7438 | 13.8203 | |
|
| 1.9027 | 29.0 | 15283 | 2.4079 | 6.6669 | 13.7855 | |
|
| 1.901 | 30.0 | 15810 | 2.4085 | 6.7555 | 13.7292 | |
|
| 1.8915 | 31.0 | 16337 | 2.4070 | 6.8025 | 13.7606 | |
|
| 1.8841 | 32.0 | 16864 | 2.4078 | 6.769 | 13.828 | |
|
| 1.8794 | 33.0 | 17391 | 2.4088 | 6.7529 | 13.825 | |
|
| 1.8703 | 34.0 | 17918 | 2.4148 | 6.7795 | 13.8596 | |
|
| 1.8651 | 35.0 | 18445 | 2.4122 | 6.7422 | 13.8233 | |
|
| 1.8597 | 36.0 | 18972 | 2.4071 | 6.7784 | 13.8395 | |
|
| 1.8568 | 37.0 | 19499 | 2.4106 | 6.7127 | 13.8599 | |
|
| 1.8436 | 38.0 | 20026 | 2.4177 | 6.8216 | 13.8977 | |
|
| 1.8386 | 39.0 | 20553 | 2.4212 | 6.72 | 13.8596 | |
|
| 1.843 | 40.0 | 21080 | 2.3578 | 6.7825 | 13.7315 | |
|
| 1.8861 | 41.0 | 21607 | 2.3585 | 6.7195 | 13.5811 | |
|
| 1.9214 | 42.0 | 22134 | 2.3743 | 6.7537 | 13.7451 | |
|
| 2.0399 | 43.0 | 22661 | 2.5768 | 5.1918 | 13.6165 | |
|
| 2.2339 | 44.0 | 23188 | 2.5552 | 5.2251 | 13.7357 | |
|
| 2.2102 | 45.0 | 23715 | 2.5288 | 5.2795 | 13.8405 | |
|
| 2.1798 | 46.0 | 24242 | 2.5107 | 5.4188 | 13.9622 | |
|
| 2.1667 | 47.0 | 24769 | 2.4992 | 5.4951 | 14.0577 | |
|
| 2.1463 | 48.0 | 25296 | 2.4904 | 5.5393 | 14.1063 | |
|
| 2.1284 | 49.0 | 25823 | 2.4842 | 5.6771 | 14.1812 | |
|
| 2.1142 | 50.0 | 26350 | 2.4803 | 5.6807 | 14.3044 | |
|
| 2.1067 | 51.0 | 26877 | 2.4775 | 5.7383 | 14.3387 | |
|
| 2.0961 | 52.0 | 27404 | 2.4767 | 5.7043 | 14.3579 | |
|
| 2.0891 | 53.0 | 27931 | 2.4771 | 5.7167 | 14.3853 | |
|
| 2.0853 | 54.0 | 28458 | 2.4780 | 5.7627 | 14.4191 | |
|
| 2.0783 | 55.0 | 28985 | 2.4774 | 5.7501 | 14.4121 | |
|
| 2.0744 | 56.0 | 29512 | 2.4825 | 5.6738 | 14.3785 | |
|
| 2.0746 | 57.0 | 30039 | 2.4889 | 5.6481 | 14.3435 | |
|
| 2.0763 | 58.0 | 30566 | 2.4937 | 5.6288 | 14.3298 | |
|
| 2.0696 | 59.0 | 31093 | 2.4985 | 5.6343 | 14.3293 | |
|
| 2.0714 | 60.0 | 31620 | 2.5013 | 5.6636 | 14.3596 | |
|
| 2.0706 | 61.0 | 32147 | 2.5043 | 5.6589 | 14.3544 | |
|
| 2.065 | 62.0 | 32674 | 2.5072 | 5.6727 | 14.3691 | |
|
| 2.0662 | 63.0 | 33201 | 2.5099 | 5.6883 | 14.3962 | |
|
| 2.0653 | 64.0 | 33728 | 2.5170 | 5.6343 | 14.3604 | |
|
| 2.0679 | 65.0 | 34255 | 2.5239 | 5.604 | 14.3328 | |
|
| 2.0738 | 66.0 | 34782 | 2.5295 | 5.5741 | 14.3064 | |
|
| 2.0741 | 67.0 | 35309 | 2.5347 | 5.5617 | 14.283 | |
|
| 2.0717 | 68.0 | 35836 | 2.5392 | 5.5388 | 14.3044 | |
|
| 2.0693 | 69.0 | 36363 | 2.5437 | 5.5111 | 14.2927 | |
|
| 2.0739 | 70.0 | 36890 | 2.5479 | 5.5074 | 14.2651 | |
|
| 2.074 | 71.0 | 37417 | 2.5554 | 5.4703 | 14.2598 | |
|
| 2.0796 | 72.0 | 37944 | 2.5651 | 5.4628 | 14.2439 | |
|
| 2.0775 | 73.0 | 38471 | 2.5742 | 5.4606 | 14.2668 | |
|
| 2.0827 | 74.0 | 38998 | 2.5827 | 5.4494 | 14.2367 | |
|
| 2.0928 | 75.0 | 39525 | 2.5906 | 5.4626 | 14.226 | |
|
| 2.0995 | 76.0 | 40052 | 2.5979 | 5.4589 | 14.269 | |
|
| 2.0984 | 77.0 | 40579 | 2.6057 | 5.4754 | 14.282 | |
|
| 2.1017 | 78.0 | 41106 | 2.6138 | 5.5446 | 14.3079 | |
|
| 2.1098 | 79.0 | 41633 | 2.6217 | 5.5664 | 14.3081 | |
|
| 2.1164 | 80.0 | 42160 | 2.6296 | 5.5431 | 14.3285 | |
|
| 2.118 | 81.0 | 42687 | 2.6369 | 5.5365 | 14.3342 | |
|
| 2.1227 | 82.0 | 43214 | 2.6440 | 5.5201 | 14.3589 | |
|
| 2.1291 | 83.0 | 43741 | 2.6463 | 5.5251 | 14.3654 | |
|
| 2.125 | 84.0 | 44268 | 2.6462 | 5.5234 | 14.3736 | |
|
| 2.1288 | 85.0 | 44795 | 2.6461 | 5.5387 | 14.3532 | |
|
| 2.1266 | 86.0 | 45322 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1269 | 87.0 | 45849 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1301 | 88.0 | 46376 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1279 | 89.0 | 46903 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1267 | 90.0 | 47430 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1259 | 91.0 | 47957 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1281 | 92.0 | 48484 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1288 | 93.0 | 49011 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1263 | 94.0 | 49538 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1288 | 95.0 | 50065 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1264 | 96.0 | 50592 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.127 | 97.0 | 51119 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1271 | 98.0 | 51646 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1307 | 99.0 | 52173 | 2.6461 | 5.5434 | 14.3534 | |
|
| 2.1246 | 100.0 | 52700 | 2.6461 | 5.5434 | 14.3534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.2+cu118 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|