germeo-7b-awq / README.md
aari1995's picture
Update README.md
dda3460 verified
---
language:
- de
pipeline_tag: text-generation
tags:
- awq
- autoawq
license: apache-2.0
---
# ***WIP***
(Please bear with me, this model will get better and get a license soon)
_Hermes + Leo + German AWQ = Germeo_
# Germeo-7B-AWQ
A German-English understanding, but German-only speaking model merged from [Hermeo-7B](https://https://huggingface.co/malteos/hermeo-7b).
### Model details
- **Merged from:** [leo-mistral-hessianai-7b-chat](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b-chat) and [DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2)
- **Model type:** Causal decoder-only transformer language model
- **Languages:** German replies with English Understanding Capabilities
- **Calibration Data:** [LeoLM/OpenSchnabeltier](https://huggingface.co/datasets/LeoLM/OpenSchnabeltier)
### Quantization Procedure and Use Case:
The speciality of this model is that it solely replies in German, independently from the system message or prompt.
Within the AWQ-process I introduced OpenSchnabeltier as calibration data for the model to stress the importance of German Tokens.
### Usage
Setup in autoawq
```python
# setup [autoawq](https://github.com/casper-hansen/AutoAWQ)
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_path = "aari1995/germeo-7b-awq"
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
```
Setup in transformers (works in colab)
```python
# pip install [autoawq](https://github.com/casper-hansen/AutoAWQ) and pip install --upgrade transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
quant_path = "aari1995/germeo-7b-awq"
# Load model
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
```
### Inference:
```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
tokens = tokenizer(
prompt_template.format(prompt=prompt),
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012
)
# tokenizer.decode(generation_output.flatten())
```
### FAQ
#### The model continues after the reply with user inputs:
To solve this, you need to implement a custom stopping criteria:
```python
from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt):
self.target_sequence = target_sequence
self.prompt=prompt
def __call__(self, input_ids, scores, **kwargs):
# Get the generated text as a string
generated_text = tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
# Check if the target sequence appears in the generated text
if self.target_sequence in generated_text:
return True # Stop generation
return False # Continue generation
def __len__(self):
return 1
def __iter__(self):
yield self
```
This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:
```python
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012,
stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)
```
### Acknowledgements and Special Thanks
- Thank you [malteos](https://https://huggingface.co/malteos/) for hermeo, without this it would not be possible! (and all your other contributions)
- Thanks to the authors of the base models: [Mistral](https://mistral.ai/), [LAION](https://laion.ai/), [HessianAI](https://hessian.ai/), [Open Access AI Collective](https://huggingface.co/openaccess-ai-collective), [@teknium](https://huggingface.co/teknium), [@bjoernp](https://huggingface.co/bjoernp)
- Also [@bjoernp](https://huggingface.co/bjoernp) thank you for your contribution and LeoLM for OpenSchnabeltier.
## Evaluation and Benchmarks (German only)
### German benchmarks
| **German tasks:** | **MMLU-DE** | **Hellaswag-DE** | **ARC-DE** |**Average** |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| _7B parameters_ | | | | |
| llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
| leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
| bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
| mistral-7b | **0.524** | 0.588 | 0.473 | 0.528 |
| leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
| DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
| hermeo-7b | 0.511 | **0.668** | **0.528** | **0.569** |
| **germeo-7b-awq (this model)**| 0.522 | 0.651 | 0.514 | 0.563 |
| _13B parameters_ | | | | |
| llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
| leo-hessianai-13b | **0.486** | **0.658** | **0.509** | **0.551** |
| _70B parameters_ | | | | |
| llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
| leo-hessianai-70b | **0.653** | **0.721** | **0.600** | **0.658** |
### German reply rate benchmark
The fraction of German reply rates according to [this benchmark](https://huggingface.co/spaces/floleuerer/german_llm_outputs)
| **Models:** | **German Response Rate** |
|-------------------------|-------------------------|
| hermeo-7b | tba |
| **germeo-7b-awq (this model)**| tba |
### Additional Benchmarks:
TruthfulQA-DE: 0.508