|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- opus100 |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: mbart-large-cc25-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize2 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: opus100 |
|
type: opus100 |
|
args: ar-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 10.5645 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-cc25-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize2 |
|
|
|
This model is a fine-tuned version of [akhooli/mbart-large-cc25-en-ar](https://huggingface.co/akhooli/mbart-large-cc25-en-ar) on the opus100 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4673 |
|
- Bleu: 10.5645 |
|
- Meteor: 0.0783 |
|
- Gen Len: 10.23 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| |
|
| 8.1731 | 0.25 | 100 | 2.8417 | 0.9599 | 0.028 | 230.885 | |
|
| 0.6743 | 0.5 | 200 | 0.4726 | 6.4055 | 0.0692 | 14.81 | |
|
| 0.3028 | 0.75 | 300 | 0.4572 | 6.7544 | 0.0822 | 23.92 | |
|
| 0.2555 | 1.0 | 400 | 0.4172 | 8.4078 | 0.0742 | 13.655 | |
|
| 0.1644 | 1.25 | 500 | 0.4236 | 9.284 | 0.071 | 13.03 | |
|
| 0.1916 | 1.5 | 600 | 0.4222 | 4.8976 | 0.0779 | 32.225 | |
|
| 0.2011 | 1.75 | 700 | 0.4305 | 7.6909 | 0.0738 | 16.675 | |
|
| 0.1612 | 2.0 | 800 | 0.4416 | 10.8622 | 0.0855 | 10.91 | |
|
| 0.116 | 2.25 | 900 | 0.4673 | 10.5645 | 0.0783 | 10.23 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|