AlphaMonarch-dora / README.md
Muhammad2003's picture
Update README.md
c4a3702 verified
|
raw
history blame
4.03 kB
---
license: cc-by-nc-4.0
base_model: mlabonne/NeuralMonarch-7B
tags:
- generated_from_trainer
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
model-index:
- name: AlphaMonarch-dora
results: []
datasets:
- argilla/OpenHermes2.5-dpo-binarized-alpha
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/7xlnpalOC4qtu-VABsib4.jpeg)
# AlphaMonarch-dora
<!-- Provide a quick summary of what the model is/does. -->
AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset using DoRA...
## ๐Ÿ† Evaluation results
# Nous Benchmark
### AGIEVAL
| Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr |
|--------------------------------|---------|----------|-----------------|---------------------|-----------------------------|
| agieval_aqua_rat | 0 | 28.35% | 2.83% | 26.38% | 2.77% |
| agieval_logiqa_en | 0 | 38.71% | 1.91% | 38.25% | 1.90% |
| agieval_lsat_ar | 0 | 23.91% | 2.82% | 23.48% | 2.80% |
| agieval_lsat_lr | 0 | 52.55% | 2.21% | 53.73% | 2.21% |
| agieval_lsat_rc | 0 | 66.91% | 2.87% | 66.54% | 2.88% |
| agieval_sat_en | 0 | 78.64% | 2.86% | 78.64% | 2.86% |
| agieval_sat_en_without_passage | 0 | 45.15% | 3.48% | 44.17% | 3.47% |
| agieval_sat_math | 0 | 33.64% | 3.19% | 31.82% | 3.15% |
AVG = 45.976
### GPT4ALL
| Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr |
|--------------|---------|----------|-----------------|---------------------|-----------------------------|
| arc_challenge| 0 | 65.87% | 1.39% | 67.92% | 1.36% |
| arc_easy | 0 | 86.49% | 0.70% | 80.64% | 0.81% |
| boolq | 1 | 87.16% | 0.59% | - | - |
| hellaswag | 0 | 69.86% | 0.46% | 87.51% | 0.33% |
| openbookqa | 0 | 39.00% | 2.18% | 49.20% | 2.24% |
| piqa | 0 | 83.03% | 0.88% | 84.82% | 0.84% |
| winogrande | 0 | 80.98% | 1.10% | - | - |
AVG = 73.18
### TRUTHFUL-QA
| Task | Version | MC1 Accuracy | MC1 Accuracy StdErr | MC2 Accuracy | MC2 Accuracy StdErr |
|---------------|---------|--------------|---------------------|--------------|---------------------|
| truthfulqa_mc | 1 | 62.91% | 1.69% | 78.48% | 1.37% |
VG = 70.69
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-7
- train_batch_size: 2
- eval_batch_size: Not specified
- seed: Not specified
- gradient_accumulation_steps: 8
- total_train_batch_size: Not specified
- optimizer: PagedAdamW with 32-bit precision
- lr_scheduler_type: Cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
### Framework versions
- Transformers 4.39.0.dev0
- Peft 0.9.1.dev0
- Datasets 2.18.0
- torch 2.2.0
- accelerate 0.27.2