|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: mlabonne/NeuralMonarch-7B |
|
tags: |
|
- generated_from_trainer |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
model-index: |
|
- name: AlphaMonarch-dora |
|
results: [] |
|
datasets: |
|
- argilla/OpenHermes2.5-dpo-binarized-alpha |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/7xlnpalOC4qtu-VABsib4.jpeg) |
|
|
|
# AlphaMonarch-dora |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset using DoRA... |
|
|
|
|
|
## ๐ Evaluation results |
|
|
|
# Nous Benchmark |
|
|
|
### AGIEVAL |
|
|
|
| Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr | |
|
|--------------------------------|---------|----------|-----------------|---------------------|-----------------------------| |
|
| agieval_aqua_rat | 0 | 28.35% | 2.83% | 26.38% | 2.77% | |
|
| agieval_logiqa_en | 0 | 38.71% | 1.91% | 38.25% | 1.90% | |
|
| agieval_lsat_ar | 0 | 23.91% | 2.82% | 23.48% | 2.80% | |
|
| agieval_lsat_lr | 0 | 52.55% | 2.21% | 53.73% | 2.21% | |
|
| agieval_lsat_rc | 0 | 66.91% | 2.87% | 66.54% | 2.88% | |
|
| agieval_sat_en | 0 | 78.64% | 2.86% | 78.64% | 2.86% | |
|
| agieval_sat_en_without_passage | 0 | 45.15% | 3.48% | 44.17% | 3.47% | |
|
| agieval_sat_math | 0 | 33.64% | 3.19% | 31.82% | 3.15% | |
|
|
|
AVG = 45.976 |
|
|
|
### GPT4ALL |
|
|
|
| Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr | |
|
|--------------|---------|----------|-----------------|---------------------|-----------------------------| |
|
| arc_challenge| 0 | 65.87% | 1.39% | 67.92% | 1.36% | |
|
| arc_easy | 0 | 86.49% | 0.70% | 80.64% | 0.81% | |
|
| boolq | 1 | 87.16% | 0.59% | - | - | |
|
| hellaswag | 0 | 69.86% | 0.46% | 87.51% | 0.33% | |
|
| openbookqa | 0 | 39.00% | 2.18% | 49.20% | 2.24% | |
|
| piqa | 0 | 83.03% | 0.88% | 84.82% | 0.84% | |
|
| winogrande | 0 | 80.98% | 1.10% | - | - | |
|
|
|
AVG = 73.18 |
|
|
|
### TRUTHFUL-QA |
|
|
|
| Task | Version | MC1 Accuracy | MC1 Accuracy StdErr | MC2 Accuracy | MC2 Accuracy StdErr | |
|
|---------------|---------|--------------|---------------------|--------------|---------------------| |
|
| truthfulqa_mc | 1 | 62.91% | 1.69% | 78.48% | 1.37% | |
|
|
|
VG = 70.69 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-7 |
|
- train_batch_size: 2 |
|
- eval_batch_size: Not specified |
|
- seed: Not specified |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: Not specified |
|
- optimizer: PagedAdamW with 32-bit precision |
|
- lr_scheduler_type: Cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1080 |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Peft 0.9.1.dev0 |
|
- Datasets 2.18.0 |
|
- torch 2.2.0 |
|
- accelerate 0.27.2 |