metadata
license: cc-by-nc-4.0
base_model: mlabonne/NeuralMonarch-7B
tags:
- generated_from_trainer
- axolotl
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
model-index:
- name: AlphaMonarch-laser
results: []
datasets:
- argilla/OpenHermes2.5-dpo-binarized-alpha
language:
- en
library_name: transformers
pipeline_tag: text-generation
AlphaMonarch-laser
out
This model is a fine-tuned version of mlabonne/NeuralMonarch-7B on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
π Axolotl Configuration
base_model: mlabonne/NeuralMonarch-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
chat_template: chatml
datasets:
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
split: train
type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- layers.1.self_attn.q_proj
- layers.0.self_attn.q_proj
- layers.15.self_attn.q_proj
- layers.12.self_attn.q_proj
- layers.11.self_attn.q_proj
- layers.14.self_attn.q_proj
- layers.9.self_attn.q_proj
- layers.16.self_attn.q_proj
- layers.30.self_attn.q_proj
- layers.18.self_attn.q_proj
- layers.13.self_attn.q_proj
- layers.10.self_attn.q_proj
- layers.7.self_attn.q_proj
- layers.8.self_attn.q_proj
- layers.4.self_attn.q_proj
- layers.19.self_attn.q_proj
- layers.27.self_attn.k_proj
- layers.24.self_attn.k_proj
- layers.25.self_attn.k_proj
- layers.22.self_attn.k_proj
- layers.26.self_attn.k_proj
- layers.29.self_attn.k_proj
- layers.23.self_attn.k_proj
- layers.28.self_attn.k_proj
- layers.21.self_attn.k_proj
- layers.31.self_attn.k_proj
- layers.30.self_attn.k_proj
- layers.20.self_attn.k_proj
- layers.5.self_attn.k_proj
- layers.19.self_attn.k_proj
- layers.17.self_attn.k_proj
- layers.18.self_attn.k_proj
- layers.19.self_attn.v_proj
- layers.24.self_attn.v_proj
- layers.18.self_attn.v_proj
- layers.5.self_attn.v_proj
- layers.3.self_attn.v_proj
- layers.16.self_attn.v_proj
- layers.23.self_attn.v_proj
- layers.27.self_attn.v_proj
- layers.25.self_attn.v_proj
- layers.26.self_attn.v_proj
- layers.20.self_attn.v_proj
- layers.6.self_attn.v_proj
- layers.15.self_attn.v_proj
- layers.17.self_attn.v_proj
- layers.29.self_attn.v_proj
- layers.22.self_attn.v_proj
- layers.12.self_attn.o_proj
- layers.9.self_attn.o_proj
- layers.14.self_attn.o_proj
- layers.0.self_attn.o_proj
- layers.6.self_attn.o_proj
- layers.8.self_attn.o_proj
- layers.10.self_attn.o_proj
- layers.11.self_attn.o_proj
- layers.13.self_attn.o_proj
- layers.24.self_attn.o_proj
- layers.7.self_attn.o_proj
- layers.15.self_attn.o_proj
- layers.5.self_attn.o_proj
- layers.17.self_attn.o_proj
- layers.25.self_attn.o_proj
- layers.4.self_attn.o_proj
- layers.31.mlp.gate_proj
- layers.30.mlp.gate_proj
- layers.4.mlp.gate_proj
- layers.3.mlp.gate_proj
- layers.29.mlp.gate_proj
- layers.28.mlp.gate_proj
- layers.6.mlp.gate_proj
- layers.27.mlp.gate_proj
- layers.5.mlp.gate_proj
- layers.26.mlp.gate_proj
- layers.25.mlp.gate_proj
- layers.7.mlp.gate_proj
- layers.2.mlp.gate_proj
- layers.24.mlp.gate_proj
- layers.23.mlp.gate_proj
- layers.10.mlp.gate_proj
- layers.6.mlp.up_proj
- layers.4.mlp.up_proj
- layers.5.mlp.up_proj
- layers.27.mlp.up_proj
- layers.25.mlp.up_proj
- layers.26.mlp.up_proj
- layers.17.mlp.up_proj
- layers.24.mlp.up_proj
- layers.7.mlp.up_proj
- layers.10.mlp.up_proj
- layers.3.mlp.up_proj
- layers.11.mlp.up_proj
- layers.23.mlp.up_proj
- layers.9.mlp.up_proj
- layers.14.mlp.up_proj
- layers.18.mlp.up_proj
- layers.19.mlp.down_proj
- layers.20.mlp.down_proj
- layers.18.mlp.down_proj
- layers.21.mlp.down_proj
- layers.29.mlp.down_proj
- layers.1.mlp.down_proj
- layers.22.mlp.down_proj
- layers.28.mlp.down_proj
- layers.23.mlp.down_proj
- layers.30.mlp.down_proj
- layers.17.mlp.down_proj
- layers.4.mlp.down_proj
- layers.2.mlp.down_proj
- layers.15.mlp.down_proj
- layers.5.mlp.down_proj
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1080
max_steps: 1080
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- axolotl: 0.4.0