|
--- |
|
datasets: |
|
- TryOnVirtual/VITON-HD-IMAGE |
|
language: |
|
- en |
|
base_model: |
|
- zhengchong/CatVTON |
|
--- |
|
# Fashibles |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
Create a conda environment & Install requirments |
|
```shell |
|
conda create -n catvton python==3.9.0 |
|
conda activate catvton |
|
cd CatVTON-fashable # or your path to CatVTON project dir |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Run the Project First Init |
|
This will full the pretrained freeze models |
|
```shell |
|
python app.py \ |
|
--output_dir="resource/demo/output" \ |
|
--mixed_precision="bf16" \ |
|
--allow_tf32 |
|
``` |
|
|
|
## Run as an API Server |
|
```shell |
|
python app_api.py |
|
``` |
|
|
|
## API Call Sample Payload |
|
```js |
|
import axios from "axios"; |
|
|
|
const form = new FormData(); |
|
form.append("person_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/assets/istockphoto-521071031-612x612.jpg"); |
|
form.append("cloth_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/resource/demo/example/condition/upper/24083449_54173465_2048.jpg"); |
|
form.append("cloth_type", "upper"); |
|
|
|
const options = { |
|
method: 'POST', |
|
url: 'http://127.0.0.1:8000/process_images', |
|
headers: { |
|
'Content-Type': 'multipart/form-data; boundary=---011000010111000001101001', |
|
'User-Agent': 'insomnia/9.3.3' |
|
}, |
|
data: '[form]' |
|
}; |
|
|
|
axios.request(options).then(function (response) { |
|
console.log(response.data); |
|
}).catch(function (error) { |
|
console.error(error); |
|
}); |
|
|
|
``` |
|
### Gradio App |
|
|
|
To deploy the Gradio App for CatVTON on your machine, run the following command, and checkpoints will be automatically downloaded from HuggingFace. |
|
|
|
```shell |
|
CUDA_VISIBLE_DEVICES=0 python app.py \ |
|
--output_dir="resource/demo/output" \ |
|
--mixed_precision="bf16" \ |
|
--allow_tf32 |
|
``` |
|
|
|
When using `bf16` precision, generating results with a resolution of `1024x768` only requires about `8G` VRAM. |
|
|
|
|
|
## |