sembr2023-bert-tiny

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2101
  • Precision: 0.7983
  • Recall: 0.6561
  • F1: 0.7202
  • Iou: 0.5628
  • Accuracy: 0.9531
  • Balanced Accuracy: 0.8196
  • Overall Accuracy: 0.9387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Iou Accuracy Balanced Accuracy Overall Accuracy
1.2554 0.06 10 1.1550 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.8047 0.12 20 0.7616 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.6392 0.18 30 0.6116 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.5328 0.24 40 0.5384 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.4859 0.3 50 0.4982 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.469 0.36 60 0.4726 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.4711 0.42 70 0.4513 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.4341 0.48 80 0.4349 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.4234 0.55 90 0.4181 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.3661 0.61 100 0.3970 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.3901 0.67 110 0.3685 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.3493 0.73 120 0.3447 0.6074 0.0126 0.0247 0.0125 0.9084 0.5059 0.9081
0.3199 0.79 130 0.3309 0.6329 0.0676 0.1222 0.0651 0.9106 0.5318 0.9095
0.3444 0.85 140 0.3219 0.6748 0.1406 0.2328 0.1317 0.9147 0.5669 0.9130
0.3131 0.91 150 0.3158 0.6768 0.2211 0.3334 0.2000 0.9187 0.6052 0.9154
0.2921 0.97 160 0.3100 0.7245 0.1708 0.2765 0.1604 0.9178 0.5821 0.9156
0.3121 1.03 170 0.3057 0.6425 0.3246 0.4313 0.2749 0.9213 0.6531 0.9157
0.3267 1.09 180 0.3035 0.6597 0.3155 0.4269 0.2714 0.9221 0.6495 0.9168
0.28 1.15 190 0.2986 0.6836 0.3429 0.4567 0.2960 0.9250 0.6634 0.9171
0.2945 1.21 200 0.2929 0.7005 0.3078 0.4276 0.2720 0.9242 0.6472 0.9177
0.2744 1.27 210 0.2874 0.7108 0.3406 0.4606 0.2992 0.9266 0.6633 0.9183
0.2563 1.33 220 0.2866 0.6712 0.4432 0.5339 0.3641 0.9288 0.7106 0.9182
0.2565 1.39 230 0.2793 0.7057 0.4187 0.5256 0.3565 0.9305 0.7005 0.9203
0.2383 1.45 240 0.2760 0.6918 0.4493 0.5448 0.3744 0.9309 0.7145 0.9197
0.2477 1.52 250 0.2698 0.7317 0.4190 0.5328 0.3632 0.9324 0.7017 0.9218
0.2466 1.58 260 0.2674 0.7119 0.4605 0.5593 0.3882 0.9332 0.7208 0.9212
0.2623 1.64 270 0.2641 0.7071 0.4675 0.5629 0.3917 0.9332 0.7240 0.9220
0.2308 1.7 280 0.2622 0.7169 0.4797 0.5748 0.4033 0.9347 0.7303 0.9225
0.2179 1.76 290 0.2577 0.7287 0.4678 0.5698 0.3984 0.9350 0.7251 0.9236
0.2347 1.82 300 0.2557 0.7425 0.4651 0.5719 0.4005 0.9360 0.7244 0.9246
0.2175 1.88 310 0.2549 0.7314 0.4873 0.5849 0.4133 0.9364 0.7346 0.9244
0.2365 1.94 320 0.2524 0.7237 0.5057 0.5954 0.4239 0.9368 0.7431 0.9244
0.2068 2.0 330 0.2513 0.7569 0.4744 0.5832 0.4117 0.9376 0.7295 0.9260
0.2004 2.06 340 0.2506 0.6962 0.5462 0.6122 0.4411 0.9363 0.7611 0.9234
0.231 2.12 350 0.2490 0.7145 0.5251 0.6053 0.4340 0.9370 0.7519 0.9241
0.2117 2.18 360 0.2457 0.7300 0.5132 0.6027 0.4314 0.9378 0.7470 0.9257
0.1768 2.24 370 0.2450 0.7281 0.5273 0.6116 0.4405 0.9384 0.7537 0.9256
0.2013 2.3 380 0.2433 0.7198 0.5513 0.6244 0.4539 0.9390 0.7648 0.9258
0.2128 2.36 390 0.2405 0.7568 0.5214 0.6174 0.4466 0.9406 0.7522 0.9282
0.2186 2.42 400 0.2393 0.7560 0.5215 0.6173 0.4464 0.9405 0.7522 0.9279
0.2105 2.48 410 0.2408 0.6966 0.5834 0.6350 0.4652 0.9383 0.7788 0.9246
0.2216 2.55 420 0.2382 0.7415 0.5493 0.6311 0.4610 0.9409 0.7650 0.9277
0.1816 2.61 430 0.2377 0.7258 0.5768 0.6428 0.4736 0.9410 0.7774 0.9274
0.2136 2.67 440 0.2352 0.7506 0.5456 0.6319 0.4619 0.9415 0.7636 0.9284
0.2043 2.73 450 0.2341 0.7425 0.5615 0.6394 0.4700 0.9418 0.7709 0.9286
0.2014 2.79 460 0.2333 0.7565 0.5572 0.6417 0.4725 0.9428 0.7695 0.9297
0.1862 2.85 470 0.2306 0.7744 0.5520 0.6446 0.4755 0.9440 0.7678 0.9313
0.1714 2.91 480 0.2312 0.7354 0.6083 0.6658 0.4991 0.9438 0.7931 0.9302
0.1693 2.97 490 0.2280 0.7637 0.5768 0.6572 0.4895 0.9447 0.7794 0.9314
0.2043 3.03 500 0.2288 0.7577 0.5848 0.6601 0.4927 0.9446 0.7830 0.9314
0.2138 3.09 510 0.2256 0.7797 0.5650 0.6552 0.4872 0.9453 0.7744 0.9327
0.1914 3.15 520 0.2250 0.7732 0.5873 0.6675 0.5010 0.9462 0.7849 0.9330
0.1647 3.21 530 0.2240 0.7586 0.6173 0.6807 0.5160 0.9467 0.7987 0.9329
0.1749 3.27 540 0.2237 0.7679 0.6108 0.6804 0.5156 0.9472 0.7961 0.9331
0.1883 3.33 550 0.2226 0.7839 0.5992 0.6792 0.5143 0.9479 0.7913 0.9344
0.1657 3.39 560 0.2196 0.7856 0.6059 0.6841 0.5199 0.9485 0.7946 0.9353
0.1721 3.45 570 0.2217 0.7556 0.6408 0.6935 0.5308 0.9479 0.8099 0.9335
0.1843 3.52 580 0.2188 0.7935 0.6010 0.6840 0.5197 0.9489 0.7926 0.9354
0.1709 3.58 590 0.2175 0.7993 0.6078 0.6905 0.5273 0.9499 0.7962 0.9364
0.1526 3.64 600 0.2168 0.7782 0.6380 0.7012 0.5398 0.9500 0.8098 0.9358
0.1614 3.7 610 0.2148 0.8129 0.6083 0.6959 0.5336 0.9511 0.7971 0.9380
0.1585 3.76 620 0.2149 0.8046 0.6210 0.7010 0.5396 0.9513 0.8029 0.9377
0.1798 3.82 630 0.2163 0.7788 0.6476 0.7072 0.5470 0.9507 0.8145 0.9364
0.1637 3.88 640 0.2147 0.8000 0.6276 0.7034 0.5425 0.9513 0.8059 0.9375
0.1542 3.94 650 0.2138 0.8004 0.6335 0.7072 0.5471 0.9518 0.8088 0.9379
0.1575 4.0 660 0.2146 0.7867 0.6464 0.7097 0.5500 0.9514 0.8143 0.9371
0.1632 4.06 670 0.2124 0.7998 0.6368 0.7091 0.5493 0.9519 0.8103 0.9380
0.1687 4.12 680 0.2112 0.8129 0.6294 0.7095 0.5498 0.9526 0.8074 0.9390
0.1565 4.18 690 0.2129 0.7959 0.6429 0.7113 0.5519 0.9520 0.8131 0.9380
0.1869 4.24 700 0.2128 0.7896 0.6526 0.7146 0.5559 0.9521 0.8175 0.9378
0.1689 4.3 710 0.2119 0.8052 0.6361 0.7107 0.5512 0.9524 0.8102 0.9385
0.1581 4.36 720 0.2126 0.7817 0.6618 0.7167 0.5585 0.9519 0.8215 0.9373
0.1683 4.42 730 0.2121 0.8019 0.6442 0.7145 0.5558 0.9526 0.8140 0.9384
0.1735 4.48 740 0.2111 0.8009 0.6452 0.7147 0.5560 0.9526 0.8145 0.9387
0.1537 4.55 750 0.2104 0.7991 0.6461 0.7145 0.5558 0.9525 0.8148 0.9386
0.174 4.61 760 0.2112 0.8031 0.6454 0.7156 0.5572 0.9528 0.8147 0.9387
0.1662 4.67 770 0.2118 0.7897 0.6586 0.7182 0.5603 0.9525 0.8204 0.9378
0.1486 4.73 780 0.2113 0.8009 0.6492 0.7171 0.5590 0.9529 0.8164 0.9386
0.1672 4.79 790 0.2110 0.8055 0.6461 0.7170 0.5589 0.9531 0.8152 0.9389
0.1553 4.85 800 0.2108 0.7969 0.6527 0.7176 0.5596 0.9528 0.8179 0.9383
0.1504 4.91 810 0.2106 0.8047 0.6461 0.7167 0.5585 0.9530 0.8151 0.9389
0.176 4.97 820 0.2103 0.8059 0.6459 0.7171 0.5589 0.9531 0.8151 0.9389
0.1597 5.03 830 0.2102 0.7979 0.6535 0.7185 0.5607 0.9529 0.8184 0.9386
0.1437 5.09 840 0.2105 0.7977 0.6539 0.7187 0.5609 0.9529 0.8185 0.9385
0.1751 5.15 850 0.2104 0.8004 0.6508 0.7179 0.5600 0.9530 0.8172 0.9386
0.1737 5.21 860 0.2105 0.7951 0.6573 0.7197 0.5621 0.9529 0.8201 0.9385
0.1683 5.27 870 0.2104 0.7953 0.6573 0.7198 0.5622 0.9529 0.8201 0.9385
0.1477 5.33 880 0.2102 0.7974 0.6536 0.7184 0.5605 0.9529 0.8184 0.9386
0.1702 5.39 890 0.2102 0.7978 0.6532 0.7183 0.5604 0.9529 0.8182 0.9386
0.1478 5.45 900 0.2101 0.7985 0.6536 0.7188 0.5611 0.9530 0.8185 0.9386
0.1656 5.52 910 0.2099 0.8 0.6522 0.7186 0.5608 0.9530 0.8179 0.9387
0.1757 5.58 920 0.2099 0.7996 0.6525 0.7186 0.5608 0.9530 0.8180 0.9387
0.1723 5.64 930 0.2100 0.7990 0.6536 0.7190 0.5613 0.9530 0.8185 0.9387
0.1472 5.7 940 0.2101 0.7976 0.6561 0.7199 0.5624 0.9531 0.8196 0.9386
0.1628 5.76 950 0.2102 0.7974 0.6564 0.7201 0.5626 0.9531 0.8198 0.9386
0.1563 5.82 960 0.2102 0.7973 0.6564 0.7200 0.5626 0.9531 0.8198 0.9386
0.1893 5.88 970 0.2102 0.7979 0.6563 0.7202 0.5628 0.9531 0.8197 0.9387
0.1554 5.94 980 0.2101 0.7982 0.6562 0.7203 0.5628 0.9531 0.8197 0.9387
0.1636 6.0 990 0.2101 0.7983 0.6561 0.7202 0.5628 0.9531 0.8196 0.9387
0.1588 6.06 1000 0.2101 0.7983 0.6561 0.7202 0.5628 0.9531 0.8196 0.9387

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
121
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for admko/sembr2023-bert-tiny

Finetuned
(58)
this model

Collection including admko/sembr2023-bert-tiny