wav2vec2-wer / README.md
adrianSauer's picture
End of training
0a21076 verified
|
raw
history blame
2.15 kB
metadata
language:
  - gn
license: apache-2.0
base_model: glob-asr/wav2vec2-large-xls-r-300m-guarani-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Common Voice 16
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16
          type: mozilla-foundation/common_voice_16_1
          config: gn
          split: test
          args: gn
        metrics:
          - name: Wer
            type: wer
            value: 43.15937940761636

Common Voice 16

This model is a fine-tuned version of glob-asr/wav2vec2-large-xls-r-300m-guarani-small on the Common Voice 16 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3185
  • Wer: 43.1594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 1
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3978 1.01 100 0.3420 46.9111
0.3263 2.02 200 0.3318 46.0931
0.28 3.03 300 0.3226 44.6827
0.2505 4.04 400 0.3173 43.9210
0.2427 5.05 500 0.3185 43.1594

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2