Edit model card

SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • "Sóc ciutadà i m'agradaria saber quin és el tràmit per a la renovació del DNI."
  • "Quin és el propòsit de la garantia per a l'abocament controlat de runes?"
  • 'Quin és el benefici de la devolució de fiances i avals?'
1
  • "Aquest text és Saludo per a un cercador de tràmits d'un ajuntament"
  • 'Bon dia, vull saber més sobre els tràmits disponibles.'
  • "Bona nit, com t'has anat acostant al final del dia?"

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/gret4")
# Run inference
preds = model("Hola!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 9.3444 17
Label Training Sample Count
0 45
1 45

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0039 1 0.2366 -
0.1931 50 0.1287 -
0.3861 100 0.0039 -
0.5792 150 0.0003 -
0.7722 200 0.0001 -
0.9653 250 0.0001 -
1.0 259 - 0.0001
1.1583 300 0.0001 -
1.3514 350 0.0001 -
1.5444 400 0.0001 -
1.7375 450 0.0001 -
1.9305 500 0.0001 -
2.0 518 - 0.0001
2.1236 550 0.0 -
2.3166 600 0.0 -
2.5097 650 0.0 -
2.7027 700 0.0 -
2.8958 750 0.0 -
3.0 777 - 0.0001

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.0+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/gret4