Model Card for Model ID
LLaMA2 7b 모델의 한국어 CP(Continual Pre-trained)모델인 https://huggingface.co/beomi/llama-2-ko-7b 모델의 instruction tuning 모델
transformers와 trl을 이용하여 QLoRA로 훈련 진행
Dataset은 https://huggingface.co/datasets/squarelike/OpenOrca-gugugo-ko
QLoRA 훈련 테스트를 위한 훈련 결과물
Model Details
Model Sources [optional]
Uses
Prompt template
"""
### instruction:
### intput:
### output:
"""
Training Details
Training Hyperparameters
Training regime: [bf16 mixed precision]
토큰 추가 후 right 패딩사이드 지정하여 진행
LoRA config
peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM" )
Evaluation
Testing Data, Factors & Metrics
link: https://github.com/Beomi/ko-lm-evaluation-harness
results/all/aeolian83/llama_ko_sft_gugugo_experi_01
0 | 5 | |
---|---|---|
kobest_boolq (macro_f1) | 0.588382 | 0.384051 |
kobest_copa (macro_f1) | 0.749558 | 0.778787 |
kobest_hellaswag (macro_f1) | 0.439247 | 0.439444 |
kobest_sentineg (macro_f1) | 0.448283 | 0.934415 |
kohatespeech (macro_f1) | 0.244828 | 0.371245 |
kohatespeech_apeach (macro_f1) | 0.337434 | 0.394607 |
kohatespeech_gen_bias (macro_f1) | 0.135272 | 0.461714 |
korunsmile (f1) | 0.254562 | 0.315907 |
nsmc (acc) | 0.61248 | 0.84256 |
pawsx_ko (acc) | 0.5615 | 0.5365 |
results/all/beomi/llama-2-ko-7b
0 | 5 | 10 | 50 | |
---|---|---|---|---|
kobest_boolq (macro_f1) | 0.612147 | 0.682832 | 0.713392 | 0.71622 |
kobest_copa (macro_f1) | 0.759784 | 0.799843 | 0.807907 | 0.829976 |
kobest_hellaswag (macro_f1) | 0.447951 | 0.460632 | 0.464623 | 0.458628 |
kobest_sentineg (macro_f1) | 0.3517 | 0.969773 | 0.977329 | 0.97481 |
kohatespeech (macro_f1) | 0.314636 | 0.383336 | 0.357491 | 0.366585 |
kohatespeech_apeach (macro_f1) | 0.346127 | 0.567627 | 0.583391 | 0.629269 |
kohatespeech_gen_bias (macro_f1) | 0.204651 | 0.509189 | 0.471078 | 0.451119 |
korunsmile (f1) | 0.290663 | 0.306208 | 0.304279 | 0.343946 |
nsmc (acc) | 0.57942 | 0.84242 | 0.87368 | 0.8939 |
pawsx_ko (acc) | 0.538 | 0.52 | 0.5275 | 0.5195 |
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.