Tensoic/Tiny-Llama-openhermes-1.1B-step-715k-1.5T-GGUF

Quantized GGUF model files for Tiny-Llama-openhermes-1.1B-step-715k-1.5T from Tensoic

Prompt Format: Alpaca

### Instruction:
{Instruction/Question}

### Response:

Original Model Card:

This model is a fine-tuned version of PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T on the openhermes dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2355

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4654 0.0 1 3.5326
1.2162 0.05 1503 1.9335
1.1918 0.1 3006 1.7391
1.4188 0.15 4509 1.7574
1.8281 0.2 6012 1.6704
0.8639 0.25 7515 1.7459
1.3764 0.3 9018 1.6832
2.1172 0.35 10521 1.6398
1.1855 0.4 12024 1.6007
1.5604 0.45 13527 1.5256
1.0224 0.5 15030 1.4891
1.5582 0.55 16533 1.4903
0.9489 0.6 18036 1.4179
1.67 0.65 19539 1.4585
0.8542 0.7 21042 1.3810
1.5301 0.75 22545 1.3645
0.951 0.8 24048 1.3087
1.1791 0.85 25551 1.3018
1.3342 0.9 27054 1.2595
1.1221 0.95 28557 1.2355

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
58
GGUF
Model size
1.1B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/Tiny-Llama-openhermes-1.1B-step-715k-1.5T-GGUF

Dataset used to train afrideva/Tiny-Llama-openhermes-1.1B-step-715k-1.5T-GGUF

Collection including afrideva/Tiny-Llama-openhermes-1.1B-step-715k-1.5T-GGUF