afrideva's picture
Upload README.md with huggingface_hub
4179d7f verified
---
base_model: BEE-spoke-data/zephyr-220m-sft-full
datasets:
- HuggingFaceH4/ultrachat_200k
inference: false
license: apache-2.0
model-index:
- name: zephyr-220m-sft-full
results: []
model_creator: BEE-spoke-data
model_name: zephyr-220m-sft-full
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- generated_from_trainer
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# BEE-spoke-data/zephyr-220m-sft-full-GGUF
Quantized GGUF model files for [zephyr-220m-sft-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [zephyr-220m-sft-full.fp16.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.fp16.gguf) | fp16 | 436.50 MB |
| [zephyr-220m-sft-full.q2_k.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q2_k.gguf) | q2_k | 94.43 MB |
| [zephyr-220m-sft-full.q3_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q3_k_m.gguf) | q3_k_m | 114.65 MB |
| [zephyr-220m-sft-full.q4_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q4_k_m.gguf) | q4_k_m | 137.58 MB |
| [zephyr-220m-sft-full.q5_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q5_k_m.gguf) | q5_k_m | 157.91 MB |
| [zephyr-220m-sft-full.q6_k.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q6_k.gguf) | q6_k | 179.52 MB |
| [zephyr-220m-sft-full.q8_0.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q8_0.gguf) | q8_0 | 232.28 MB |
## Original Model Card:
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-220m-sft-full
This model is a fine-tuned version of [BEE-spoke-data/smol_llama-220M-openhermes](https://huggingface.co/BEE-spoke-data/smol_llama-220M-openhermes) on the Ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6447 | 1.0 | 1624 | 1.6579 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
https://wandb.ai/amazingvince/huggingface/runs/5rffzk3x/workspace?workspace=user-amazingvince