mega-base-wikitext-finetuned-KAGGLE

This model is a fine-tuned version of mnaylor/mega-base-wikitext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9914
  • Accuracy: 0.8207

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 11 2.1216 0.4552
No log 2.0 22 1.9996 0.8207
No log 3.0 33 1.8810 0.8138
No log 4.0 44 1.7691 0.8138
No log 5.0 55 1.6643 0.8138
No log 6.0 66 1.5688 0.8138
No log 7.0 77 1.4820 0.8138
No log 8.0 88 1.4057 0.8138
No log 9.0 99 1.3398 0.8138
No log 10.0 110 1.2837 0.8138
No log 11.0 121 1.2361 0.8138
No log 12.0 132 1.1960 0.8138
No log 13.0 143 1.1628 0.8138
No log 14.0 154 1.1352 0.8138
No log 15.0 165 1.1129 0.8138
No log 16.0 176 1.0944 0.8138
No log 17.0 187 1.0790 0.8138
No log 18.0 198 1.0664 0.8138
No log 19.0 209 1.0561 0.8138
No log 20.0 220 1.0480 0.8138
No log 21.0 231 1.0416 0.8138
No log 22.0 242 1.0368 0.8138
No log 23.0 253 1.0334 0.8138
No log 24.0 264 1.0314 0.8138
No log 25.0 275 1.0307 0.8138

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for agarc15/mega-base-wikitext-finetuned-KAGGLE

Finetuned
(14)
this model