File size: 2,172 Bytes
02735d5 b33a05b 38755f4 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b cfa166d 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 b33a05b 02735d5 2e651ba 0a0f7dc b33a05b 02735d5 b33a05b 02735d5 b33a05b 446760b e73b064 446760b e73b064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
datasets:
- agentsea/wave-ui
language:
- en
library_name: transformers
---
# Paligemma WaveUI
Transformers [PaliGemma 3B 896-res weights](https://huggingface.co/google/paligemma-3b-pt-896), fine-tuned on the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for object-detection.
## Model Details
### Model Description
This fine-tune was done atop of the [Paligemma 896](https://huggingface.co/google/paligemma-3b-pt-896) model, using the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset, which contains ~80k examples of labeled UI elements.
The fine-tune was done for the object detection task. Specifically, this model aims to perform well at UI element detection, as part of a wider effort to enable our open-source toolkit for building agents at [AgentSea](https://www.agentsea.ai/).
- **Developed by:** https://agentsea.ai/
- **Language(s) (NLP):** en
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-pt-896
### Demo
You can find a **demo** for this model [here](https://huggingface.co/spaces/agentsea/paligemma-waveui).
## Notes
- The only task used in the fine-tune was the object detection task, so it might not perform well in other types of tasks.
## Usage
To start using this model, run the following:
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-waveui-896").eval()
processor = AutoProcessor.from_pretrained("agentsea/paligemma-3b-ft-waveui-896")
```
## Data
We used the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for this fine-tune. Before using it, we preprocessed the data to use the Paligemma bounding-box format.
## Evaluation
We calculated the mean IoU over 1024 examples of the test set using 3 different closed-source models: Gemini 1.5 Pro, Claude 3.5 Sonnet and GPT 4o. We also ran this same calculation using the PaliGemma WaveUI fine-tunes. We obtained the following values:
- Gemini 1.5 Pro: 0.12
- Claude 3.5 Sonnet: 0.05
- GPT 4o: 0.05
- PaliGemma Widgetcap+WaveUI 448: 0.40
- **PaliGemma WaveUI 896: 0.49**
|