|
--- |
|
base_model: UBC-NLP/AraT5v2-base-1024 |
|
tags: |
|
- summarization |
|
- Arat5v2 |
|
- abstractive summarization |
|
- ar |
|
- xlsum |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
model-index: |
|
- name: AraT5v2-base-1024-finetune-ar-xlsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AraT5v2-base-1024-finetune-ar-xlsum |
|
|
|
This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.7983 |
|
- Rouge-1: 33.4 |
|
- Rouge-2: 16.14 |
|
- Rouge-l: 29.31 |
|
- Gen Len: 18.63 |
|
- Bertscore: 74.57 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 192 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- num_epochs: 10 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| |
|
| 6.1614 | 1.0 | 195 | 3.9898 | 28.51 | 12.02 | 24.64 | 18.87 | 72.64 | |
|
| 4.5342 | 2.0 | 390 | 3.9048 | 29.5 | 13.01 | 25.85 | 18.53 | 73.34 | |
|
| 4.2029 | 3.0 | 585 | 3.8162 | 31.64 | 14.33 | 27.54 | 18.57 | 73.88 | |
|
| 3.9689 | 4.0 | 781 | 3.7949 | 31.87 | 14.56 | 27.9 | 18.55 | 74.04 | |
|
| 3.8278 | 5.0 | 976 | 3.7702 | 31.85 | 14.58 | 27.74 | 18.74 | 73.96 | |
|
| 3.6921 | 6.0 | 1171 | 3.7775 | 32.27 | 14.95 | 28.16 | 18.78 | 74.23 | |
|
| 3.5632 | 7.0 | 1367 | 3.7751 | 32.54 | 15.04 | 28.4 | 18.72 | 74.36 | |
|
| 3.493 | 8.0 | 1562 | 3.7815 | 32.35 | 14.95 | 28.24 | 18.71 | 74.32 | |
|
| 3.4189 | 9.0 | 1757 | 3.7908 | 32.39 | 14.99 | 28.32 | 18.73 | 74.32 | |
|
| 3.3492 | 9.98 | 1950 | 3.7983 | 32.6 | 15.19 | 28.5 | 18.72 | 74.35 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|