librarian-bot's picture
Librarian Bot: Add base_model information to model
a61040b
|
raw
history blame
1.54 kB
---
tags:
- summarization
- mT5_multilingual_XLSum
- mt5
- abstractive summarization
- ar
- generated_from_trainer
datasets:
- wiki_lingua
base_model: csebuetnlp/mT5_multilingual_XLSum
model-index:
- name: mT5_multilingual_XLSum-finetuned-wikilingua-ar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5_multilingual_XLSum-finetuned-wikilingua-ar
This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the wiki_lingua dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5540
- Rouge-1: 27.46
- Rouge-2: 9.0
- Rouge-l: 22.59
- Gen Len: 43.41
- Bertscore: 73.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 8
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.19.3
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1