ahmeddbahaa's picture
update model card README.md
99e2f7d
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xlsum-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xlsum
type: xlsum
args: english
metrics:
- name: Rouge1
type: rouge
value: 23.7508
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xlsum-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6629
- Rouge1: 23.7508
- Rouge2: 5.5427
- Rougel: 18.6777
- Rougelsum: 18.652
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.0789 | 1.0 | 1010 | 2.6881 | 22.6824 | 4.4735 | 17.6707 | 17.5485 |
| 2.9223 | 2.0 | 2020 | 2.6629 | 23.7508 | 5.5427 | 18.6777 | 18.652 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6