YAML Metadata Warning: The pipeline tag "video-to-audio" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

Kandinsky-4-v2a: A Video to Audio pipeline





Description

Video to Audio pipeline consists of a visual encoder, a text encoder, UNet diffusion model to generate spectrogram and Griffin-lim algorithm to convert spectrogram into audio. Visual and text encoders share the same multimodal visual language decoder (cogvlm2-video-llama3-chat).

Our UNet diffusion model is a finetune of the music generation model riffusion. We made modifications in the architecture to condition on video frames and improve the synchronization between video and audio. Also, we replace the text encoder with the decoder of cogvlm2-video-llama3-chat.

image/png

Installation

git clone https://github.com/ai-forever/Kandinsky-4.git
cd Kandinsky-4
conda install -c conda-forge ffmpeg -y
pip install -r kandinsky4_video2audio/requirements.txt
pip install "git+https://github.com/facebookresearch/pytorchvideo.git"

Inference

Inference code for Video-to-Audio:

import torch
import torchvision

from kandinsky4_video2audio.video2audio_pipe import Video2AudioPipeline
from kandinsky4_video2audio.utils import load_video, create_video

device='cuda:0'

pipe = Video2AudioPipeline(
    "ai-forever/kandinsky-4-v2a",
    torch_dtype=torch.float16,
    device = device
)

video_path = 'assets/inputs/1.mp4'
video, _, fps = torchvision.io.read_video(video_path)

prompt="clean. clear. good quality."
negative_prompt = "hissing noise. drumming rythm. saying. poor quality."
video_input, video_complete, duration_sec = load_video(video, fps['video_fps'], num_frames=96, max_duration_sec=12)
    
out = pipe(
    video_input,
    prompt,
    negative_prompt=negative_prompt,
    duration_sec=duration_sec, 
)[0]

save_path = f'assets/outputs/1.mp4'
create_video(
    out, 
    video_complete, 
    display_video=True,
    save_path=save_path,
    device=device
)

Authors

Downloads last month
29
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ai-forever/kandinsky-4-v2a

Finetuned
(7)
this model

Dataset used to train ai-forever/kandinsky-4-v2a