Update README.md
#1
by
Motit
- opened
README.md
CHANGED
@@ -1,5 +1,412 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: jamba-open-model-license
|
4 |
-
license_link: https://www.ai21.com/jamba-open-model-license/
|
5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: jamba-open-model-license
|
4 |
+
license_link: https://www.ai21.com/jamba-open-model-license/
|
5 |
+
---
|
6 |
+
# Model Information
|
7 |
+
|
8 |
+
Built with hybrid SSM-Transformer architecture, the Jamba 1.6 family of models outperform other open, instruction-following foundation models on quality, speed, and long context performance, and rival leading closed models on quality. As open models, Jamba Mini 1.6 (12B active/52B total) and Jamba Large 1.6 (94B active/398B total) are available for private deployment, either in VPC or on-premise, and demonstrate superior performance on the kind of long context tasks that matter most to enterprises, such as RAG workflows and grounded question answering across lengthy documents.
|
9 |
+
|
10 |
+
The models are released under the Jamba Open Model License, a permissive license allowing full research use and commercial use under the license terms.
|
11 |
+
|
12 |
+
If you need to license the model for your needs, talk to us.
|
13 |
+
|
14 |
+
For more details of this model, see the release [blog post](https://www.ai21.com/blog/introducing-jamba-1-6).
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Developed by:** [AI21](https://www.ai21.com)
|
18 |
+
- **Model type:** Joint Attention and Mamba (Jamba)
|
19 |
+
- **License:** [Jamba Open Model License](https://www.ai21.com/licenses/jamba-open-model-license)
|
20 |
+
- **Context length:** 256K
|
21 |
+
- **Knowledge cutoff date:** March 5, 2024
|
22 |
+
- **Supported languages:** English, Spanish, French, Portuguese, Italian, Dutch, German, Arabic and Hebrew
|
23 |
+
|
24 |
+
## Results on common benchmarks
|
25 |
+
|
26 |
+
| Benchmark | Jamba Mini 1.6 | Ministral 8B | Llama 3.1 8B | Command R7B |
|
27 |
+
|--------------|:-----:|:-----:|:-----:|:-----:|
|
28 |
+
| Arena Hard | 51.2| 41.35| 28.17| 27.95|
|
29 |
+
| CRAG | 76.2| 52| 60| 23.1|
|
30 |
+
| FinanceBench (FullDoc) | 45.4 | 19.2 | 28.4 | 2.8|
|
31 |
+
| HELMET LongQA | 46.9 | 33 | 29.2| 9.6|
|
32 |
+
| LongBench | 32 | 17.5 | 17.7 | 2|
|
33 |
+
|
34 |
+
LongBench and Arena Hard scores are from official leaderboards for applicable models. Examples that couldn't fit models' context windows were scored accordingly. Due to a 32K context limit in its vLLM deployment, Ministral 8B was evaluated through its official API.
|
35 |
+
# Usage
|
36 |
+
## Prerequisites
|
37 |
+
|
38 |
+
In order to run optimized Mamba implementations, you first need to install `mamba-ssm` and `causal-conv1d`:
|
39 |
+
```bash
|
40 |
+
pip install mamba-ssm causal-conv1d>=1.2.0
|
41 |
+
```
|
42 |
+
You also have to have the model on a CUDA device.
|
43 |
+
|
44 |
+
|
45 |
+
## Run the model with vLLM
|
46 |
+
|
47 |
+
The recommended way to perform efficient inference with Jamba Mini 1.6 is using [vLLM](https://docs.vllm.ai/en/latest/). First, make sure to install vLLM (version 0.5.4 or higher is required)
|
48 |
+
```bash
|
49 |
+
pip install vllm>=0.5.4
|
50 |
+
```
|
51 |
+
|
52 |
+
In the example below, `number_gpus` should match the number of GPUs you want to deploy Jamba Mini 1.6 on. A minimum of 2 80GB GPUs is required.
|
53 |
+
|
54 |
+
```python
|
55 |
+
from vllm import LLM, SamplingParams
|
56 |
+
from transformers import AutoTokenizer
|
57 |
+
|
58 |
+
model = "ai21labs/AI21-Jamba-Mini-1.6"
|
59 |
+
number_gpus = 2
|
60 |
+
|
61 |
+
llm = LLM(model=model,
|
62 |
+
max_model_len=200*1024,
|
63 |
+
tensor_parallel_size=number_gpus)
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
66 |
+
|
67 |
+
messages = [
|
68 |
+
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
|
69 |
+
{"role": "user", "content": "Hello!"},
|
70 |
+
]
|
71 |
+
|
72 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
73 |
+
|
74 |
+
sampling_params = SamplingParams(temperature=0.4, top_p=0.95, max_tokens=100)
|
75 |
+
outputs = llm.generate(prompts, sampling_params)
|
76 |
+
|
77 |
+
generated_text = outputs[0].outputs[0].text
|
78 |
+
print(generated_text)
|
79 |
+
#Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
|
80 |
+
```
|
81 |
+
|
82 |
+
With the default BF16 precision on 2 80GB A100 GPUs and default vLLM configuration, you'll be able to perform inference on prompts up to 200K tokens long. On more than 2 80GB GPUs, you can easily fit the full 256K context.
|
83 |
+
|
84 |
+
<u>Note:</u> vLLM's `main` branch has some memory utilization improvements specific to the Jamba architecture that allow using the full 256K context length on 2 80 GPUs. You can [build vLLM from source](https://docs.vllm.ai/en/latest/getting_started/installation.html#build-from-source) if you wish to make use of them.
|
85 |
+
|
86 |
+
### ExpertsInt8 quantization
|
87 |
+
We've developed an innovative and efficient quantization technique, [ExpertsInt8](https://www.ai21.com/blog/announcing-jamba-model-family#:~:text=Like%20all%20models%20in%20its%20size%20class%2C%20Jamba%201.6%20Large%20can%E2%80%99t%20be%20loaded%20in%20full%20(FP32)%20or%20half%20(FP16/BF16)%20precision%20on%20a%20single%20node%20of%208%20GPUs.%20Dissatisfied%20with%20currently%20available%20quantization%20techniques%2C%20we%20developed%20ExpertsInt8%2C%20a%20novel%20quantization%20technique%20tailored%20for%20MoE%20models.), designed for MoE models deployed in vLLM, including Jamba models. Using it, you'll be able to deploy Jamba Mini 1.6 on a single 80GB GPU.
|
88 |
+
|
89 |
+
In order to use ExpertsInt8, you need to use vllm version 0.5.5 or higher: `pip install vllm>=0.5.5`
|
90 |
+
|
91 |
+
With default vLLM configuration, you can fit prompts up to 100K on a single 80GB A100 GPU:
|
92 |
+
```python
|
93 |
+
import os
|
94 |
+
os.environ['VLLM_FUSED_MOE_CHUNK_SIZE']='32768' # This is a workaround a bug in vLLM's fused_moe kernel
|
95 |
+
|
96 |
+
from vllm import LLM
|
97 |
+
llm = LLM(model="ai21labs/AI21-Jamba-Mini-1.6",
|
98 |
+
max_model_len=100*1024,
|
99 |
+
quantization="experts_int8")
|
100 |
+
```
|
101 |
+
|
102 |
+
|
103 |
+
## Run the model with `transformers`
|
104 |
+
|
105 |
+
The following example loads Jamba Mini 1.6 to the GPU in BF16 precision, uses optimized [FlashAttention2](https://github.com/Dao-AILab/flash-attention) and Mamba kernels, and parallelizes the model across multiple GPUs using [accelerate](https://huggingface.co/docs/accelerate/index). Note that in half precision (FP16/BF16), Jamba Mini 1.6 is too large to fit on a single 80GB GPU, so you'll need at least 2 such GPUs.
|
106 |
+
|
107 |
+
```python
|
108 |
+
import torch
|
109 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
110 |
+
|
111 |
+
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
|
112 |
+
torch_dtype=torch.bfloat16,
|
113 |
+
attn_implementation="flash_attention_2",
|
114 |
+
device_map="auto")
|
115 |
+
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
|
117 |
+
|
118 |
+
messages = [
|
119 |
+
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
|
120 |
+
{"role": "user", "content": "Hello!"},
|
121 |
+
]
|
122 |
+
|
123 |
+
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)
|
124 |
+
|
125 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
126 |
+
|
127 |
+
# Decode the output
|
128 |
+
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
129 |
+
|
130 |
+
# Split the conversation to get only the assistant's response
|
131 |
+
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
|
132 |
+
print(assistant_response)
|
133 |
+
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
|
134 |
+
```
|
135 |
+
|
136 |
+
<u>Note:</u> Versions 4.44.0 and 4.44.1 of `transformers` have a bug that restricts the ability to run the Jamba architecture. Make sure you're not using these versions.
|
137 |
+
|
138 |
+
<u>Note:</u> If you're having trouble installing `mamba-ssm` and `causal-conv1d` for the optimized Mamba kernels, you can run Jamba Mini 1.6 without them, at the cost of extra latency. In order to do that, add the kwarg `use_mamba_kernels=False` when loading the model via `AutoModelForCausalLM.from_pretained()`.
|
139 |
+
|
140 |
+
<details><summary><strong>Load the model in 8-bit</strong></summary>
|
141 |
+
|
142 |
+
**Using 8-bit precision, it is possible to fit up to 140K sequence length on a single 80GB GPU.** You can easily quantize the model to 8-bit using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/index). In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
|
143 |
+
|
144 |
+
```python
|
145 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
146 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
|
147 |
+
llm_int8_skip_modules=["mamba"])
|
148 |
+
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
|
149 |
+
torch_dtype=torch.bfloat16,
|
150 |
+
attn_implementation="flash_attention_2",
|
151 |
+
quantization_config=quantization_config)
|
152 |
+
```
|
153 |
+
|
154 |
+
</details>
|
155 |
+
|
156 |
+
<details><summary><strong>Load the model on CPU</strong></summary>
|
157 |
+
|
158 |
+
If you don't have access to a GPU, you can also load and run Jamba Mini 1.6 on a CPU. Note this will result in poor inference performance.
|
159 |
+
|
160 |
+
```python
|
161 |
+
from transformers import AutoModelForCausalLM
|
162 |
+
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
|
163 |
+
use_mamba_kernels=False)
|
164 |
+
```
|
165 |
+
</details>
|
166 |
+
<br>
|
167 |
+
<br>
|
168 |
+
|
169 |
+
# Model features
|
170 |
+
|
171 |
+
## Tool use with Jamba
|
172 |
+
Jamba Mini 1.6 supports tool use capabilities in accordance with Huggingface's tool use API. The tools defined by the user are inserted into a dedicated section in the chat template which the model was trained to recognize.
|
173 |
+
|
174 |
+
Given a conversation that contains tools, the model can output content, tool invocations or both.
|
175 |
+
|
176 |
+
<details><summary><strong>Tool usage example</strong></summary>
|
177 |
+
|
178 |
+
|
179 |
+
```python
|
180 |
+
from transformers import AutoTokenizer
|
181 |
+
|
182 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
|
183 |
+
|
184 |
+
messages = [
|
185 |
+
{
|
186 |
+
"role": "user",
|
187 |
+
"content": "What's the weather like right now in Jerusalem and in London?"
|
188 |
+
}
|
189 |
+
]
|
190 |
+
|
191 |
+
tools = [
|
192 |
+
{
|
193 |
+
'type': 'function',
|
194 |
+
'function': {
|
195 |
+
'name': 'get_current_weather',
|
196 |
+
'description': 'Get the current weather',
|
197 |
+
'parameters': {
|
198 |
+
'type': 'object',
|
199 |
+
'properties': {
|
200 |
+
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
|
201 |
+
'format': {'type': 'string', 'enum': ['celsius', 'fahrenheit'], 'description': 'The temperature unit to use. Infer this from the users location.'}
|
202 |
+
},
|
203 |
+
'required': ['location', 'format']
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
]
|
208 |
+
|
209 |
+
prompt = tokenizer.apply_chat_template(
|
210 |
+
messages,
|
211 |
+
tools=tools,
|
212 |
+
tokenize=False,
|
213 |
+
)
|
214 |
+
```
|
215 |
+
Output:
|
216 |
+
```
|
217 |
+
<tool_calls>[
|
218 |
+
{"name": "get_current_weather", "arguments": {"location": "Jerusalem", "format": "celsius"}},
|
219 |
+
{"name": "get_current_weather", "arguments": {"location": "celsius", "format": "celsius"}}
|
220 |
+
]</tool_calls>
|
221 |
+
```
|
222 |
+
|
223 |
+
</details>
|
224 |
+
|
225 |
+
|
226 |
+
<details><summary><strong>Feeding back tool responses into the model</strong></summary>
|
227 |
+
|
228 |
+
Now that the model has called the tools, we need to feed the tool responses back to the model. In the next call, send the assistant message with the `tool_messages` field, as shown below, along with additional `tool` messages (in the corresponding order) that contain the tool outputs.
|
229 |
+
|
230 |
+
The `arguments` field for each tool call can be either a dict or a JSON string.
|
231 |
+
|
232 |
+
```python
|
233 |
+
from transformers import AutoTokenizer
|
234 |
+
|
235 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
|
236 |
+
|
237 |
+
# Note that you must send the tool responses in the same order as the model called the tools:
|
238 |
+
messages = [
|
239 |
+
{
|
240 |
+
"role": "user",
|
241 |
+
"content": "What's the weather like right now in Jerusalem and in London?"
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"role": "assistant",
|
245 |
+
"content": null,
|
246 |
+
"tool_calls": [
|
247 |
+
{
|
248 |
+
"name": "get_current_weather",
|
249 |
+
"arguments": "{\"location\": \"Jerusalem\", \"format\": \"celsius\"}"
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"name": "get_current_weather",
|
253 |
+
"arguments": "{\"location\": \"London\", \"format\": \"celsius\"}"
|
254 |
+
}
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"role": "tool",
|
259 |
+
"content": "The weather in Jerusalem is 18 degrees celsius."
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"role": "tool",
|
263 |
+
"content": "The weather in London is 8 degrees celsius."
|
264 |
+
}
|
265 |
+
]
|
266 |
+
|
267 |
+
tool_use_prompt = tokenizer.apply_chat_template(
|
268 |
+
messages,
|
269 |
+
tools=tools,
|
270 |
+
tokenize=False,
|
271 |
+
)
|
272 |
+
```
|
273 |
+
example output:
|
274 |
+
```
|
275 |
+
The weather in Jerusalem is currently 18 degrees Celsius. In London, it is 8 degrees Celsius.
|
276 |
+
```
|
277 |
+
|
278 |
+
</details>
|
279 |
+
|
280 |
+
|
281 |
+
## Fine-tuning examples
|
282 |
+
|
283 |
+
The examples below use the `SFTTrainer` from [huggingface/trl](https://github.com/huggingface/trl), so ensure it's installed:
|
284 |
+
```bash
|
285 |
+
pip install trl
|
286 |
+
```
|
287 |
+
|
288 |
+
## Full Fine-tuning example
|
289 |
+
To train a full finetune using AWS multi nodes and FSDP configuration, follow the instructions here [hf-finetune-sagemaker](https://github.com/AI21Labs/hf-finetune-sagemaker)
|
290 |
+
|
291 |
+
## LoRA example
|
292 |
+
|
293 |
+
Here is an example of fine-tuning with LoRA PEFT, in bfloat16 (requires ~130GB GPU RAM, so e.g. 2xA100 80GB):
|
294 |
+
|
295 |
+
```python
|
296 |
+
import torch
|
297 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
298 |
+
from datasets import load_dataset
|
299 |
+
from trl import SFTTrainer, SFTConfig
|
300 |
+
from peft import LoraConfig
|
301 |
+
|
302 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
|
303 |
+
model = AutoModelForCausalLM.from_pretrained(
|
304 |
+
"ai21labs/AI21-Jamba-Mini-1.6",
|
305 |
+
device_map="auto",
|
306 |
+
torch_dtype=torch.bfloat16,
|
307 |
+
attn_implementation="flash_attention_2",
|
308 |
+
)
|
309 |
+
|
310 |
+
lora_config = LoraConfig(
|
311 |
+
r=8,
|
312 |
+
target_modules=[
|
313 |
+
"embed_tokens",
|
314 |
+
"x_proj", "in_proj", "out_proj", # mamba
|
315 |
+
"gate_proj", "up_proj", "down_proj", # mlp
|
316 |
+
"q_proj", "k_proj", "v_proj", "o_proj", # attention
|
317 |
+
],
|
318 |
+
task_type="CAUSAL_LM",
|
319 |
+
bias="none",
|
320 |
+
)
|
321 |
+
|
322 |
+
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
|
323 |
+
training_args = SFTConfig(
|
324 |
+
output_dir="/dev/shm/results",
|
325 |
+
logging_dir="./logs",
|
326 |
+
num_train_epochs=2,
|
327 |
+
per_device_train_batch_size=4,
|
328 |
+
learning_rate=1e-5,
|
329 |
+
logging_steps=10,
|
330 |
+
gradient_checkpointing=True,
|
331 |
+
max_seq_length=4096,
|
332 |
+
save_steps=100,
|
333 |
+
)
|
334 |
+
trainer = SFTTrainer(
|
335 |
+
model=model,
|
336 |
+
tokenizer=tokenizer,
|
337 |
+
args=training_args,
|
338 |
+
peft_config=lora_config,
|
339 |
+
train_dataset=dataset,
|
340 |
+
)
|
341 |
+
trainer.train()
|
342 |
+
```
|
343 |
+
|
344 |
+
Note that the dataset in the example uses conversational format (with `messages` column), so `SFTTrainer` automatically applies Jamba's chat-template as explained in [TRL docs](https://huggingface.co/docs/trl/main/en/sft_trainer#dataset-format-support).
|
345 |
+
|
346 |
+
## QLoRA example
|
347 |
+
|
348 |
+
To fit fine-tuning on a single 80GB GPU, you can levarage [QLoRA](https://arxiv.org/abs/2305.14314) which combines LoRA with the frozen model quantized to 4-bit:
|
349 |
+
|
350 |
+
```python
|
351 |
+
import torch
|
352 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
353 |
+
from datasets import load_dataset
|
354 |
+
from trl import SFTTrainer, SFTConfig
|
355 |
+
from peft import LoraConfig
|
356 |
+
|
357 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
|
358 |
+
quantization_config = BitsAndBytesConfig(
|
359 |
+
load_in_4bit=True,
|
360 |
+
bnb_4bit_quant_type="nf4",
|
361 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
362 |
+
)
|
363 |
+
model = AutoModelForCausalLM.from_pretrained(
|
364 |
+
"ai21labs/AI21-Jamba-Mini-1.6",
|
365 |
+
device_map="auto",
|
366 |
+
quantization_config=quantization_config,
|
367 |
+
torch_dtype=torch.bfloat16,
|
368 |
+
attn_implementation="flash_attention_2",
|
369 |
+
)
|
370 |
+
lora_config = LoraConfig(
|
371 |
+
r=8,
|
372 |
+
target_modules=[
|
373 |
+
"embed_tokens", "x_proj", "in_proj", "out_proj", # mamba
|
374 |
+
"gate_proj", "up_proj", "down_proj", # mlp
|
375 |
+
"q_proj", "k_proj", "v_proj", "o_proj", # attention
|
376 |
+
],
|
377 |
+
task_type="CAUSAL_LM",
|
378 |
+
bias="none",
|
379 |
+
)
|
380 |
+
|
381 |
+
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
|
382 |
+
training_args = SFTConfig(
|
383 |
+
output_dir="./results",
|
384 |
+
logging_dir="./logs",
|
385 |
+
num_train_epochs=2,
|
386 |
+
per_device_train_batch_size=8,
|
387 |
+
learning_rate=1e-5,
|
388 |
+
logging_steps=1,
|
389 |
+
gradient_checkpointing=True,
|
390 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
391 |
+
save_steps=100,
|
392 |
+
max_seq_length=4096,
|
393 |
+
)
|
394 |
+
trainer = SFTTrainer(
|
395 |
+
model=model,
|
396 |
+
tokenizer=tokenizer,
|
397 |
+
args=training_args,
|
398 |
+
peft_config=lora_config,
|
399 |
+
train_dataset=dataset,
|
400 |
+
)
|
401 |
+
trainer.train()
|
402 |
+
```
|
403 |
+
|
404 |
+
Note: the above example reqiures the `bitsandbytes` package for the 4-bit quantization:
|
405 |
+
```bash
|
406 |
+
pip install bitsandbytes
|
407 |
+
```
|
408 |
+
|
409 |
+
# About AI21
|
410 |
+
|
411 |
+
AI21 builds reliable, practical, and scalable AI solutions for the enterprise. The Jamba models are available in the [AI21 Studio](https://www.ai21.com/studio) and in leading cloud partners.
|
412 |
+
To learn more about how Jamba Mini 1.6 and Jamba Large 1.6 can bring real world value to your organization, let’s talk.
|