Model Card for AIdeaLab VideoJP
AIdeaLab VideoJP is a text-to-video model learning from CC-BY, CC-0 like images. AIdeaLab VideoJP is made in Japan. This model is supported by GENIAC (NEDO, METI).
Model Details
Model Description
At AIdeaLab, we develop AI technology through active dialogue with creators, aiming for mutual understanding and cooperation. We strive to solve challenges faced by creators and grow together. One of these challenges is that some creators and fans want to use video generation but can't, likely due to the lack of permission to use certain videos for training. To address this issue, we have developed AIdeaLab VideoJP.
Features of AIdeaLab VideoJP
- Principally uses images with obtained learning permissions
- Understands both Japanese and English text inputs directly
- Minimizes the risk of exact reproduction of training images
- Utilizes cutting-edge technology for high quality and efficiency
Misc.
- Developed by: alfredplpl, maty0505
- Funded by: AIdeaLab, Inc. and NEDO, and METI
- Shared by: AIdeaLab, Inc.
- Model type: Rectified Flow Transformer
- Language(s) (NLP): Japanese, English
- License: Apache-2.0
Model Sources
- Repository: TBA
- Paper : blog
How to Get Started with the Model
- diffusers
- Install libraries.
pip install transformers diffusers
- Run the following script
from diffusers.utils import export_to_video
import tqdm
from torchvision.transforms import ToPILImage
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import CogVideoXTransformer3DModel, AutoencoderKLCogVideoX
prompt="ใใฅใผใชใใใ่ใฎ่ฑใ่ฒใจใใฉใใฎ่ฑใๆใฆใใชใ็ถใ็ใๅใๅฐฝใใใใพใใงใใใใฏใผใฏใฎใใใซใซใฉใใซใซๅฝฉใใๆใฎๆใใใชๅ
ใ่ฑใณใใ้ใใใๆทกใใฐใฉใใผใทใงใณใๆ ใใใ้ขจใซๆบใใ่ฑใ
ใในใญใผใขใผใทใงใณใงๆใใ่ฑใณใใๅช้
ใซ่ใๅงฟใๆ ็ปใฎใใใชๆผๅบใงๆฎๅฝฑใ่ๆฏใซใฏ้ ใใซ้ฃใชใๅฑฑไธฆใฟใ้ใ็ฉบใๆตฎใใถ็ฝใ้ฒใ็ซไฝๆใๅผใ็ซใฆใใ"
device="cuda"
shape=(1,48//4,16,256//8,256//8)
sample_N=25
torch_dtype=torch.bfloat16
eps=1
cfg=2.5
tokenizer = AutoTokenizer.from_pretrained(
"llm-jp/llm-jp-3-1.8b"
)
text_encoder = AutoModelForCausalLM.from_pretrained(
"llm-jp/llm-jp-3-1.8b",
torch_dtype=torch_dtype
)
text_encoder=text_encoder.to(device)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=512,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True, attention_mask=text_inputs.attention_mask.to(device)).hidden_states[-1]
prompt_embeds = prompt_embeds.to(dtype=torch_dtype, device=device)
null_text_inputs = tokenizer(
"",
padding="max_length",
max_length=512,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
null_text_input_ids = null_text_inputs.input_ids
null_prompt_embeds = text_encoder(null_text_input_ids.to(device), output_hidden_states=True, attention_mask=null_text_inputs.attention_mask.to(device)).hidden_states[-1]
null_prompt_embeds = null_prompt_embeds.to(dtype=torch_dtype, device=device)
# Free VRAM
del text_encoder
transformer = CogVideoXTransformer3DModel.from_pretrained(
"aidealab/AIdeaLab-VideoJP",
torch_dtype=torch_dtype
)
transformer=transformer.to(device)
vae = AutoencoderKLCogVideoX.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="vae"
)
vae=vae.to(dtype=torch_dtype, device=device)
vae.enable_slicing()
vae.enable_tiling()
# euler discreate sampler with cfg
z0 = torch.randn(shape, device=device)
latents = z0.detach().clone().to(torch_dtype)
dt = 1.0 / sample_N
with torch.no_grad():
for i in tqdm.tqdm(range(sample_N)):
num_t = i / sample_N
t = torch.ones(shape[0], device=device) * num_t
psudo_t=(1000-eps)*(1-t)+eps
positive_conditional = transformer(hidden_states=latents, timestep=psudo_t, encoder_hidden_states=prompt_embeds, image_rotary_emb=None)
null_conditional = transformer(hidden_states=latents, timestep=psudo_t, encoder_hidden_states=null_prompt_embeds, image_rotary_emb=None)
pred = null_conditional.sample+cfg*(positive_conditional.sample-null_conditional.sample)
latents = latents.detach().clone() + dt * pred.detach().clone()
# Free VRAM
del transformer
latents = latents / vae.config.scaling_factor
latents = latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
x=vae.decode(latents).sample
x = x / 2 + 0.5
x = x.clamp(0,1)
x=x.permute(0, 2, 1, 3, 4).to(torch.float32)# [B, F, C, H, W]
print(x.shape)
x=[ToPILImage()(frame) for frame in x[0]]
export_to_video(x,"output.mp4",fps=24)
Uses
Direct Use
- Assistance in creating illustrations, manga, and anime
- For both commercial and non-commercial purposes
- Communication with creators when making requests
- Commercial provision of image generation services
- Please be cautious when handling generated content
- Self-expression
- Using this AI to express "your" uniqueness
- Research and development
- Fine-tuning (also known as additional training) such as LoRA
- Merging with other models
- Examining the performance of this model using metrics like FID
- Education
- Graduation projects for art school or vocational school students
- University students' graduation theses or project assignments
- Teachers demonstrating the current state of image generation AI
- Uses described in the Hugging Face Community
- Please ask questions in Japanese or English
Out-of-Scope Use
- Generate misinfomation or disinformation.
Bias, Risks, and Limitations
- Cannot generate anime
Training Details
Training Data
We used these dataset to train the transformer:
Technical Specifications
Model Architecture and Objective
Model Architecture
Objective
Software
Model Card Contact
Acknowledgement
We approciate the video providers. So, we are standing on the shoulders of giants.
- Downloads last month
- 582
Inference API (serverless) does not yet support diffusers models for this pipeline type.