text-summarization-evaluation-model

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4100
  • Rouge1: 0.1909
  • Rouge2: 0.0934
  • Rougel: 0.1617
  • Rougelsum: 0.1619
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.4775 0.1556 0.0622 0.1297 0.1301 19.0
No log 2.0 124 2.4374 0.1822 0.0868 0.1534 0.1537 19.0
No log 3.0 186 2.4164 0.1888 0.0922 0.16 0.1602 19.0
No log 4.0 248 2.4100 0.1909 0.0934 0.1617 0.1619 19.0

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for akash2212/text-summarization-evaluation-model

Base model

google-t5/t5-small
Finetuned
(1689)
this model

Dataset used to train akash2212/text-summarization-evaluation-model

Evaluation results