metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:473546
- loss:MultipleNegativesRankingLoss
base_model: NeuML/pubmedbert-base-embeddings
widget:
- source_sentence: Lantus
sentences:
- >-
Corrosion of first degree of unspecified hand, unspecified site,
subsequent encounter
- Anencephaly
- >-
Type 2 diabetes mellitus with diabetic peripheral angiopathy without
gangrene
- Type 2 diabetes mellitus with diabetic cataract
- Type 2 diabetes mellitus with diabetic autonomic (poly)neuropathy
- Crushed by nonvenomous snake, initial encounter
- Type 2 diabetes mellitus with diabetic mononeuropathy
- Type 2 diabetes mellitus with diabetic chronic kidney disease
- Encounter for attention to other artificial openings
- >-
Fracture of base of skull, left side, subsequent encounter for fracture
with delayed healing
- Type 2 diabetes mellitus with ketoacidosis without coma
- source_sentence: Follicular thyroid carcinoma
sentences:
- >-
Unspecified fracture of lower end of unspecified ulna, subsequent
encounter for open fracture type I or II with nonunion
- Neoplasm of unspecified behavior of digestive system
- >-
Unspecified fracture of T9-T10 vertebra, subsequent encounter for
fracture with nonunion
- Other benign neuroendocrine tumors
- Malignant poorly differentiated neuroendocrine tumors
- Malignant neoplasm of pyriform sinus
- Malignant neoplasm of trachea
- Poisoning by iminostilbenes, assault, sequela
- >-
Stress fracture, unspecified foot, subsequent encounter for fracture
with delayed healing
- >-
Adverse effect of other parasympathomimetics [cholinergics], initial
encounter
- Malignant neoplasm of thyroid gland
- source_sentence: Cardiac ischemia
sentences:
- >-
Displaced fracture of middle phalanx of other finger, subsequent
encounter for fracture with delayed healing
- >-
Unspecified displaced fracture of surgical neck of left humerus,
subsequent encounter for fracture with routine healing
- >-
Nondisplaced Maisonneuve's fracture of left leg, subsequent encounter
for open fracture type I or II with routine healing
- Partial traumatic amputation at right shoulder joint, initial encounter
- >-
Toxic effect of unspecified noxious substance eaten as food,
undetermined, initial encounter
- Corrosion of third degree of left toe(s) (nail), sequela
- >-
Atherosclerotic heart disease of native coronary artery with unstable
angina pectoris
- Other specified injury of axillary artery, left side, sequela
- >-
Hemiplegia and hemiparesis following nontraumatic subarachnoid
hemorrhage affecting left dominant side
- Displaced transverse fracture of shaft of unspecified femur
- >-
Partial traumatic transmetacarpal amputation of unspecified hand,
sequela
- source_sentence: Intrauterine fetal death
sentences:
- Dislocation of other parts of lumbar spine and pelvis, sequela
- >-
Poisoning by cardiac-stimulant glycosides and drugs of similar action,
intentional self-harm, sequela
- Insect bite (nonvenomous) of unspecified finger, sequela
- >-
Other diseases of the blood and blood-forming organs and certain
disorders involving the immune mechanism complicating the puerperium
- >-
Other specified diseases and conditions complicating pregnancy,
childbirth and the puerperium
- Diseases of the respiratory system complicating childbirth
- Diseases of the circulatory system complicating childbirth
- Diseases of the skin and subcutaneous tissue complicating childbirth
- >-
War operations involving other forms of conventional warfare, civilian,
sequela
- External constriction of vagina and vulva
- Anemia complicating childbirth
- source_sentence: CAD
sentences:
- Dislocation of C6/C7 cervical vertebrae, subsequent encounter
- >-
Unspecified injury of extensor muscle, fascia and tendon of left little
finger at wrist and hand level, subsequent encounter
- >-
Other fracture of lower end of left tibia, subsequent encounter for
closed fracture with malunion
- >-
Other fracture of upper end of unspecified radius, subsequent encounter
for closed fracture with delayed healing
- >-
Poisoning by monoamine-oxidase-inhibitor antidepressants, undetermined,
subsequent encounter
- >-
Atherosclerotic heart disease of native coronary artery with unspecified
angina pectoris
- Sprain of anterior cruciate ligament of right knee, initial encounter
- Myopia, bilateral
- Velamentous insertion of umbilical cord, first trimester
- Iliofemoral ligament sprain of left hip, subsequent encounter
- Air embolism (traumatic), sequela
datasets:
- FrancescoBuda/mimic10-hard-negatives
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on NeuML/pubmedbert-base-embeddings
This is a sentence-transformers model finetuned from NeuML/pubmedbert-base-embeddings on the mimic10-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NeuML/pubmedbert-base-embeddings
- Maximum Sequence Length: 64 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alecocc/icd10-hard-negatives")
# Run inference
sentences = [
'CAD',
'Atherosclerotic heart disease of native coronary artery with unspecified angina pectoris',
'Myopia, bilateral',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
mimic10-hard-negatives
- Dataset: mimic10-hard-negatives at ef88fe5
- Size: 473,546 training samples
- Columns:
anchor
,positive
,negative_1
,negative_2
,negative_3
,negative_4
,negative_5
,negative_6
,negative_7
,negative_8
,negative_9
, andnegative_10
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 type string string string string string string string string string string string string details - min: 3 tokens
- mean: 4.53 tokens
- max: 14 tokens
- min: 3 tokens
- mean: 9.67 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 10.19 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 10.49 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 10.8 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 11.1 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 11.64 tokens
- max: 38 tokens
- min: 3 tokens
- mean: 15.14 tokens
- max: 37 tokens
- min: 3 tokens
- mean: 15.58 tokens
- max: 40 tokens
- min: 4 tokens
- mean: 15.1 tokens
- max: 40 tokens
- min: 3 tokens
- mean: 14.96 tokens
- max: 37 tokens
- min: 3 tokens
- mean: 15.35 tokens
- max: 38 tokens
- Samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 Anterior exenteration
Malignant neoplasm of bladder neck
Malignant neoplasm of unspecified kidney, except renal pelvis
Malignant neoplasm of unspecified renal pelvis
Malignant neoplasm of left ureter
Malignant neoplasm of paraurethral glands
Malignant neoplasm of left renal pelvis
Unspecified kyphosis, cervical region
Unspecified superficial injuries of left back wall of thorax, initial encounter
Dome fracture of acetabulum
Other fracture of left great toe, initial encounter for open fracture
Unspecified fracture of upper end of unspecified radius, subsequent encounter for open fracture type IIIA, IIIB, or IIIC with malunion
Atorvastatin
Hyperlipidemia, unspecified
Other lactose intolerance
Lipomatosis, not elsewhere classified
Mucopolysaccharidosis, type II
Hyperuricemia without signs of inflammatory arthritis and tophaceous disease
Volume depletion, unspecified
Glaucoma secondary to other eye disorders, unspecified eye
Fracture of one rib, left side, subsequent encounter for fracture with routine healing
Toxic effect of other tobacco and nicotine, accidental (unintentional), sequela
Puncture wound without foreign body of left ring finger with damage to nail
Nondisplaced fracture of epiphysis (separation) (upper) of unspecified femur, subsequent encounter for open fracture type IIIA, IIIB, or IIIC with nonunion
Urostomy
Malignant neoplasm of bladder neck
Malignant neoplasm of urinary organ, unspecified
Malignant neoplasm of overlapping sites of urinary organs
Malignant neoplasm of left ureter
Malignant neoplasm of urethra
Malignant neoplasm of left renal pelvis
Indeterminate leprosy
Poisoning by other viral vaccines, accidental (unintentional)
Fracture of unspecified metatarsal bone(s), right foot, initial encounter for open fracture
Sprain of tarsometatarsal ligament of unspecified foot, subsequent encounter
Burn of first degree of multiple sites of left ankle and foot, initial encounter
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0270 | 100 | 4.1948 |
0.0541 | 200 | 3.5402 |
0.0811 | 300 | 3.2462 |
0.1081 | 400 | 2.9691 |
0.1351 | 500 | 2.788 |
0.1622 | 600 | 2.5922 |
0.1892 | 700 | 2.5648 |
0.2162 | 800 | 2.4821 |
0.2432 | 900 | 2.47 |
0.2703 | 1000 | 2.3774 |
0.2973 | 1100 | 2.3415 |
0.3243 | 1200 | 2.2428 |
0.3514 | 1300 | 2.2794 |
0.3784 | 1400 | 2.2372 |
0.4054 | 1500 | 2.2265 |
0.4324 | 1600 | 2.2186 |
0.4595 | 1700 | 2.2074 |
0.4865 | 1800 | 2.159 |
0.5135 | 1900 | 2.1903 |
0.5405 | 2000 | 2.1328 |
0.5676 | 2100 | 2.0685 |
0.5946 | 2200 | 2.1249 |
0.6216 | 2300 | 2.1321 |
0.6486 | 2400 | 2.0725 |
0.6757 | 2500 | 2.0913 |
0.7027 | 2600 | 2.0192 |
0.7297 | 2700 | 2.036 |
0.7568 | 2800 | 1.9863 |
0.7838 | 2900 | 2.0411 |
0.8108 | 3000 | 1.9796 |
0.8378 | 3100 | 2.0102 |
0.8649 | 3200 | 1.8652 |
0.8919 | 3300 | 1.0192 |
0.9189 | 3400 | 0.9623 |
0.9459 | 3500 | 0.957 |
0.9730 | 3600 | 0.8579 |
1.0 | 3700 | 0.7984 |
1.0270 | 3800 | 0.6359 |
1.0541 | 3900 | 0.7348 |
1.0811 | 4000 | 0.6356 |
1.1081 | 4100 | 0.6252 |
1.1351 | 4200 | 0.6587 |
1.1622 | 4300 | 0.602 |
1.1892 | 4400 | 0.6803 |
1.2162 | 4500 | 0.6204 |
1.2432 | 4600 | 0.667 |
1.2703 | 4700 | 0.6253 |
1.2973 | 4800 | 0.5375 |
1.3243 | 4900 | 0.6054 |
1.3514 | 5000 | 0.4541 |
1.3784 | 5100 | 0.5334 |
1.4054 | 5200 | 0.6075 |
1.4324 | 5300 | 0.5037 |
1.4595 | 5400 | 0.4825 |
1.4865 | 5500 | 0.5442 |
1.5135 | 5600 | 0.4999 |
1.5405 | 5700 | 0.6521 |
1.5676 | 5800 | 0.5769 |
1.5946 | 5900 | 0.5029 |
1.6216 | 6000 | 0.5787 |
1.6486 | 6100 | 0.5235 |
1.6757 | 6200 | 0.5839 |
1.7027 | 6300 | 0.5339 |
1.7297 | 6400 | 0.5339 |
1.7568 | 6500 | 0.4515 |
1.7838 | 6600 | 0.5648 |
1.8108 | 6700 | 0.4355 |
1.8378 | 6800 | 0.5321 |
1.8649 | 6900 | 0.4778 |
1.8919 | 7000 | 0.4884 |
1.9189 | 7100 | 0.5941 |
1.9459 | 7200 | 0.5489 |
1.9730 | 7300 | 0.444 |
2.0 | 7400 | 0.4964 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.0.dev0
- Datasets: 2.18.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}