librarian-bot's picture
Librarian Bot: Add base_model information to model
aedd9d2
|
raw
history blame
3.67 kB
metadata
language:
  - be
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Small Belarusian
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 be
          type: mozilla-foundation/common_voice_11_0
          config: be
          split: validation
          args: be
        metrics:
          - type: wer
            value: 6.3671568743912
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 be
          type: mozilla-foundation/common_voice_11_0
          config: be
          split: test
          args: be
        metrics:
          - type: wer
            value: 6.79
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: be_by
          split: test
        metrics:
          - type: wer
            value: 43.615168811067036
            name: 'WER (reference column: transcription)'
          - type: wer
            value: 45.89674723962996
            name: 'WER (reference column: raw_transcription)'

Whisper Small Belarusian

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 be dataset. It achieves the following results on the evaluation set:

  • Loss on validation: 0.0706
  • WER on validation set: 6.3672
  • WER on test set: 6.79

Source code

All the source coude is located both in:

Code in these 2 places should be the same. GitHub is used to make development and training of multiple models (small, base, etc.) easier.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1907 0.08 1000 0.2546 25.4639
0.1482 0.17 2000 0.1641 17.1676
0.1175 0.25 3000 0.1454 15.5940
0.0958 0.33 4000 0.1261 13.2625
0.099 0.42 5000 0.1012 10.6143
0.028 1.05 6000 0.1053 9.8794
0.0473 1.13 7000 0.1029 10.3078
0.0391 1.21 8000 0.0924 9.2419
0.0423 1.3 9000 0.0797 7.9249
0.0604 1.38 10000 0.0688 7.0150
0.0121 2.01 11000 0.0696 6.4638
0.0155 2.1 12000 0.0706 6.3672

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2