alexdg19's picture
End of training
251d096
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: bert_large_xsum_samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.5083

bert_large_xsum_samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9030
  • Rouge1: 0.5083
  • Rouge2: 0.2528
  • Rougel: 0.41
  • Rougelsum: 0.4105
  • Gen Len: 29.0183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 41 1.6008 0.4779 0.2349 0.4058 0.4056 21.1037
No log 2.0 82 1.5804 0.5104 0.2526 0.4242 0.4239 24.689
No log 3.0 123 1.7310 0.5148 0.253 0.4162 0.4155 28.0793
No log 4.0 164 1.7974 0.5019 0.2443 0.4127 0.4125 25.189
No log 5.0 205 1.9030 0.5083 0.2528 0.41 0.4105 29.0183

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1