alexdg19's picture
End of training
a2fc3b6
|
raw
history blame
2.38 kB
metadata
license: mit
base_model: alexdg19/bert_large_xsum_samsum
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: bert_large_xsum_samsum2
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.6112

bert_large_xsum_samsum2

This model is a fine-tuned version of alexdg19/bert_large_xsum_samsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1949
  • Rouge1: 0.6112
  • Rouge2: 0.3855
  • Rougel: 0.5301
  • Rougelsum: 0.5296
  • Gen Len: 30.5427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 41 0.9966 0.6323 0.416 0.5587 0.5598 26.9573
No log 2.0 82 1.0976 0.6279 0.413 0.5569 0.5583 27.8171
No log 3.0 123 1.1576 0.6236 0.4141 0.553 0.5537 29.5183
No log 4.0 164 1.1998 0.6148 0.3948 0.5402 0.541 30.5061
No log 5.0 205 1.1949 0.6112 0.3855 0.5301 0.5296 30.5427

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1