|
--- |
|
license: mit |
|
base_model: alexdg19/bert_large_xsum_samsum |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bert_large_xsum_samsum2 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.6112 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_large_xsum_samsum2 |
|
|
|
This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum](https://huggingface.co/alexdg19/bert_large_xsum_samsum) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1949 |
|
- Rouge1: 0.6112 |
|
- Rouge2: 0.3855 |
|
- Rougel: 0.5301 |
|
- Rougelsum: 0.5296 |
|
- Gen Len: 30.5427 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 41 | 0.9966 | 0.6323 | 0.416 | 0.5587 | 0.5598 | 26.9573 | |
|
| No log | 2.0 | 82 | 1.0976 | 0.6279 | 0.413 | 0.5569 | 0.5583 | 27.8171 | |
|
| No log | 3.0 | 123 | 1.1576 | 0.6236 | 0.4141 | 0.553 | 0.5537 | 29.5183 | |
|
| No log | 4.0 | 164 | 1.1998 | 0.6148 | 0.3948 | 0.5402 | 0.541 | 30.5061 | |
|
| No log | 5.0 | 205 | 1.1949 | 0.6112 | 0.3855 | 0.5301 | 0.5296 | 30.5427 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|