alexdg19's picture
End of training
b56ab03
---
license: mit
base_model: alexdg19/bert_large_xsum_samsum
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bert_large_xsum_samsum3
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 0.5313
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_large_xsum_samsum3
This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum](https://huggingface.co/alexdg19/bert_large_xsum_samsum) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2354
- Rouge1: 0.5313
- Rouge2: 0.2827
- Rougel: 0.4367
- Rougelsum: 0.4357
- Gen Len: 30.939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 164 | 1.1370 | 0.5599 | 0.3246 | 0.4748 | 0.4743 | 29.0122 |
| No log | 2.0 | 328 | 1.2659 | 0.5494 | 0.3033 | 0.4623 | 0.4612 | 27.0671 |
| No log | 3.0 | 492 | 1.4188 | 0.5198 | 0.2726 | 0.436 | 0.4346 | 28.6768 |
| 0.6603 | 4.0 | 656 | 1.5628 | 0.5391 | 0.2905 | 0.4555 | 0.4553 | 28.6159 |
| 0.6603 | 5.0 | 820 | 1.9045 | 0.5237 | 0.2774 | 0.4326 | 0.4321 | 31.5854 |
| 0.6603 | 6.0 | 984 | 2.0670 | 0.5199 | 0.2689 | 0.4251 | 0.4243 | 31.8049 |
| 0.1722 | 7.0 | 1148 | 1.9653 | 0.5269 | 0.2703 | 0.4342 | 0.4333 | 28.5122 |
| 0.1722 | 8.0 | 1312 | 2.1921 | 0.5296 | 0.2765 | 0.4393 | 0.4387 | 31.8354 |
| 0.1722 | 9.0 | 1476 | 2.4336 | 0.5299 | 0.2825 | 0.4399 | 0.4388 | 31.7988 |
| 0.052 | 10.0 | 1640 | 2.2354 | 0.5313 | 0.2827 | 0.4367 | 0.4357 | 30.939 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1