T5-XSum-base / README.md
alexrodpas's picture
Model save
4d11363
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: T5-XSum-base
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          config: default
          split: train
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.273

T5-XSum-base

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5491
  • Rouge1: 0.273
  • Rouge2: 0.0711
  • Rougel: 0.2134
  • Rougelsum: 0.2134
  • Gen Len: 18.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.8234 1.0 2041 2.5916 0.2623 0.0647 0.2043 0.2044 18.8152
2.7742 2.0 4082 2.5577 0.2707 0.0702 0.2118 0.2117 18.8212
2.7482 3.0 6123 2.5491 0.273 0.0711 0.2134 0.2134 18.8194

Framework versions

  • Transformers 4.35.0
  • Pytorch 1.12.0+cu116
  • Datasets 2.14.6
  • Tokenizers 0.14.1