|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
language: |
|
- fa |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This model is Persian Q/A fine-tuned on Google's Gemma open-source model. Users can ask general question from it. It can be used for chatbot applications and fine-tuning for |
|
other datasets. |
|
- **Developed by:** Ali Bidaran |
|
- **Language(s) (NLP):** Farsi |
|
- **Finetuned from model [optional]:** Gemma2b |
|
|
|
|
|
|
|
## Uses |
|
This model can be used for developing chatbot applications, Q/A, instruction engineering and fine-tuning with other persian datasets. |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
``` python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer |
|
|
|
model_id = "alibidaran/Gemma2_Farsi" |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_TOKEN']) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}, token=os.environ['HF_TOKEN']) |
|
prompt = "چند روش برای کاهش چربی بدن ارائه نمایید؟" |
|
text = f"<s> ###Human: {prompt} ###Asistant: " |
|
|
|
inputs=tokenizer(text,return_tensors='pt').to('cuda') |
|
with torch.no_grad(): |
|
outputs=model.generate(**inputs,max_new_tokens=400,do_sample=True,top_p=0.99,top_k=10,temperature=0.7) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
|
``` |
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
|
|
|
|
|