metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: S1_M1_R3_vit_42499444
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.998303647158609
S1_M1_R3_vit_42499444
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0076
- Accuracy: 0.9983
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0799 | 0.99 | 73 | 0.0444 | 0.9958 |
0.0309 | 1.99 | 147 | 0.0085 | 0.9992 |
0.0072 | 3.0 | 221 | 0.0090 | 0.9983 |
0.0021 | 4.0 | 295 | 0.0076 | 0.9992 |
0.0018 | 4.95 | 365 | 0.0076 | 0.9983 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu102
- Datasets 2.16.0
- Tokenizers 0.15.0