metadata
tags:
- merge
- mergekit
- lazymergekit
- allknowingroger/LimyQstar-7B-slerp
- allknowingroger/JaskierMistral-7B-slerp
- allknowingroger/LimmyAutomerge-7B-slerp
base_model:
- allknowingroger/LimyQstar-7B-slerp
- allknowingroger/JaskierMistral-7B-slerp
- allknowingroger/LimmyAutomerge-7B-slerp
TripleMerge2-7B-Ties
TripleMerge2-7B-Ties is a merge of the following models using LazyMergekit:
- allknowingroger/LimyQstar-7B-slerp
- allknowingroger/JaskierMistral-7B-slerp
- allknowingroger/LimmyAutomerge-7B-slerp
🧩 Configuration
models:
- model: allknowingroger/LimyQstar-7B-slerp
parameters:
density: [1, 0.7, 0.1] # density gradient
weight: 1.0
- model: allknowingroger/JaskierMistral-7B-slerp
parameters:
density: 0.5
weight: [0, 0.3, 0.7, 1] # weight gradient
- model: allknowingroger/LimmyAutomerge-7B-slerp
parameters:
density: 0.33
weight:
- filter: mlp
value: 0.5
- value: 0
merge_method: ties
base_model: allknowingroger/LimyQstar-7B-slerp
parameters:
normalize: true
int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "allknowingroger/TripleMerge2-7B-Ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])