YAML Metadata Error: "datasets[0]" with value "ALFFA,Gamayun & IWSLT" is not valid. If possible, use a dataset id from https://hf.co/datasets.
YAML Metadata Error: "model-index[0].results[0].dataset.type" is required

Wav2Vec2-Large-XLSR-53-Swahili

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Swahili using the following datasets:

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor


processor = Wav2Vec2Processor.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw")

model = Wav2Vec2ForCTC.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw").to("cuda")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def load_file_to_data(file):
    batch = {}
    speech, _ = torchaudio.load(file)
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    return batch


def predict(data):
    features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
    input_values = features.input_values.to("cuda")
    attention_mask = features.attention_mask.to("cuda")
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    return processor.batch_decode(pred_ids)

predict(load_file_to_data('./demo.wav'))

Test Result: 40 %

Training

The script used for training can be found here

Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. "model-index[0].results[0].dataset.type" is required